
SysCap: Profiling and Crosschecking Syscall and
Capability Configurations for Docker Images

Yunlong Xing∗, Jiahao Cao‡, Xinda Wang∗, Sadegh Torabi∗, Kun Sun∗, Fei Yan†, Qi Li‡
∗ George Mason University, Fairfax, VA, USA

† Wuhan University, Wuhan, China
‡ Tsinghua University, Beijing, China

Abstract—Due to its advantages of faster start-up speed and
better resource utilization efficiency, container technology has
been widely deployed in software deployment. However, the
benefits of containers come at the cost of weak isolation for
the underlying shared OS kernel. To enhance the security of
containers, it is critical to customize secure configurations for
each specific container, including the system call list and the
capability list. However, existing solutions mainly focus on system
call profiling and most of these approaches still demand huge
human efforts to manually configure and successfully run each
container. Moreover, the dependency between capability and
system call has not been considered and cross-checked during
the profiling process. In this paper, we develop a toolkit named
SysCap to automatically customize required system calls and
capabilities for Docker images. SysCap provides a static analyzer
tool to construct a libc-to-syscall mapping via analyzing the
libc and a syscall-to-capability mapping via analyzing the Linux
kernel. When given a Docker image, SysCap parses the Docker
image statically to obtain the binary-level called functions in
the target layer and then queries them with the libc-to-syscall
mapping to obtain the required system calls. Next, SysCap
queries the obtained system calls with the syscall-to-capability
mapping to obtain the required capabilities. Thus, SysCap can
customize a secure configuration of system call and capability for
a given Docker image. We test SysCap on the top 193 Docker
images from Dockerhub, and the experimental results show that
SysCap works on all images and can reduce the attack surface
effectively.

Index Terms—syscall profiling, capability profiling, container
security

I. INTRODUCTION

Containers have been widely deployed in cloud environ-
ments due to their convenience and flexibility. Compared to
traditional virtual machines (VM) that run their own operating
systems (OS), containers occupy fewer system resources, start-
up much faster, and have better performance. Nevertheless, the
benefits of containers come at the cost of weak isolation. When
containers share the same underlying OS kernel, malicious
tenants with access to a container may exploit kernel interfaces
to escape into the host kernel space [1] and compromise other
containers running on the same host.

Docker and similar technologies take a layered approach to
security, using several distinct Linux security mechanisms to
provide process isolation. Both capabilities [2] and seccomp

This work was partially supported by NSF CNS-1815650, Hubei Province
Key Research and Development Program of China under Grant No.
2020BAA003, NSFC under Grant 62132011, and the Shuimu Tsinghua
Scholar Program.

filters [3] play a part in reducing the risks of container escape.
The capability mechanism divides the traditional root privilege
into multiple distinct units, which can be independently en-
abled and disabled. When running a Docker container, there
are 14 out of 41 capabilities enabled by default [4]. Since
system calls are the entry points for container processes to
exploit kernel vulnerabilities, seccomp [3] has been adopted to
limit available system calls in a syscall whitelist for containers.
For Docker containers, there are 289 out of 333 system calls
enabled by default [5].

Given the increasing number of diverse container images, it
is crucial to automatically customize the capability whitelist
and the system call whitelist for a given container. However,
there exist two remaining challenges. First, the existing system
call profiling solutions still require heavy human efforts when
generating the system call whitelist for containers [6]–[10].
BOXMATE [6], DockerSlim [10], SPEAKER [7], and Cim-
plifier [8] track invoked system calls by manually configuring
and then running the container for a time period, leading to
an incomplete system call coverage. Confine [9] combines
static analysis with dynamic analysis to improve the system
call coverage for a container. It still requires specialists to
manually configure and run each container for separating ap-
plication binaries and required libraries from container images.
Second, when profiling both system calls and capabilities,
we should consider the dependency between capability and
system call. We observe that the capability has been checked
as a gatekeeper before certain system calls are triggered. For
instance, system calls sethostname and mount require
the CAP_SYS_ADMIN capability for their normal running.
However, when those system calls are invoked, the additional
capabilities are not listed in the default capability list. On the
other side, the default capability list may still assign too much
privileges for containers. To reduce the attack surface, it is
important to remove the unnecessary capabilities.

In this paper, we develop a software toolkit named SysCap
to help automatically profile both the necessary system calls
and the required capabilities for Docker images. We adopt a
static analysis approach to analyze Docker images and related
libraries without running the containers. It targets automati-
cally generating the correlated whitelists for both system calls
and capabilities without involving heavy human efforts. It
consists of three major modules, i.e., docker image parser,
libc-to-syscall mapper, and syscall-to-capability mapper.



The docker image parser accurately locates target binaries
of applications in Docker images and extracts the called
functions. To accurately locate the required binaries of the
target application in a hierarchical Docker image, we use the
Dockerfile to reconstruct the linear relation between different
layers that are stored disorderly in an image and automatically
deduce the functionality of each layer. Then we extract the
called functions in the binaries obtained from the target layer.

The libc-to-syscall mapper constructs a mapping table be-
tween libc functions and the related system calls and then
obtains the required system calls for functions extracted in
Docker image parsing, via identifying system calls in libc and
building a complete calling relation. First, when invoking a
system call, the corresponding system call number is usually
passed to specific registers (i.e., eax or rax), and a software
interrupt will be triggered to complete the kernel service.
However, there are different ways to pass the system call
numbers to the registers, increasing the difficulty of identifying
a specific system call. Thus, we propose a method named
Register Value Backtracking to identify the passing patterns of
system call numbers. Second, after identifying all system calls,
we construct a complete calling graph for libc to determine
what system calls are invoked by each libc function. Con-
sidering a large number of libc functions and complex calling
relations, the traditional directed graph construction algorithms
may not work due to the huge performance overhead. Instead,
we propose an efficient algorithm to improve the performance
and completeness when building the calling graph. Finally, we
obtain the required system calls by comparing the called func-
tions from the image parser and the libc-to-syscall mapping.

The syscall-to-capability mapper is responsible for generat-
ing a mapping table between system calls and their required
capabilities. It is done by identifying all positions that check
for capabilities and their corresponding parameters and per-
forming system call reachability analysis. First, it compiles the
Linux kernel into one bytecode using wllvm [11] and resolves
indirect calls based on struct-type [12]. Then it identifies all
capability checking functions that take a specific capability
as a parameter in the kernel IR and locates functions calling
these capability checking functions. Meanwhile, it records the
related parameters for capability. Next, it performs control-
flow analysis based on the kernel control flow graph. If
there is a path from a specific system call to the capability
checking positions, we keep this correspondence to the syscall-
to-capability mapping. Finally, after comparing the invoked
system calls with the syscall-to-capability mapping, we can
obtain the required capability list.

We conduct extensive experiments to evaluate the perfor-
mance of our tool over the top 193 popular official Docker
images that cover different application categories. SysCap
can automatically extract system calls for all 193 images
and SysCap reduces about 62% unnecessary system calls
on average. By comparing with the results from dynamic
analysis methods, we find that all the system calls obtained by
dynamically tracking are subsets of those obtained by SysCap.
Meanwhile, SysCap increases 6.6% more system calls on

average than the dynamic analysis methods. As for the gen-
erated capability list, 78.5% of containers require less than 7
capabilities. On average, 5.3 capabilities are required and only
about 4% of containers require more than 14 capabilities.

In summary, we make the following contributions:
• We develop a toolkit called SysCap to statically profile

both system calls and capabilities of Docker images by
considering the dependency between syscalls and capa-
bilities, reducing the attack surface of containers hugely.

• We implement our toolkit by building the connection be-
tween libc-to-syscall and syscall-to-capability mapping.
It is the first work to take the capability mechanism into
consideration when profiling the Docker configurations.

• We evaluate our toolkit using 193 popular official Docker
images the result shows that SysCap can automatically
and successfully generate both the system call whitelist
and required capabilities for various Docker images.

II. BACKGROUND

A. Seccomp

The latest Linux kernel (v5.18) provides about 350 system
calls. However, most of them are not needed for running a
specific application. To prevent attackers from abusing extra
system calls, secure computing mode (seccomp) has been
integrated into the Linux kernel to limit available system calls.
There are two working modes for seccomp, namely, strict
mode and filter mode. When working in the strict mode, a user
process can only invoke 4 system calls, i.e., read, write,
exit, and sigreturn, and other system calls tried by user
processes will be blocked. In the filter mode, a customized
system call whitelist is enforced on a target process.

B. Syscall and Capability

The implementation of syscall is gated by corresponding ca-
pabilities. That is, enabling a syscall and disabling the required
capabilities cannot complete requesting the kernel services,
and vice versa. The latest Linux kernel contains 41 capabilities
and each capability represents a bit in a bitmap of a process.
When running a container, there are 14 capabilities enabled
by default [4]. However, for some operations, it will require
the additional capability that is not in the default list, e.g.,
sethostname requiring the privilege of CAP_SYS_ADMIN.
For some containers, a few capabilities in the default list will
not be required and thus can be removed.

III. SYSTEM OVERVIEW

SysCap aims to automatically generate a secure configura-
tion for a Docker image to disable the unused system calls
and capabilities without impacting the normal operations of
the application. Fig. 1 shows the architecture of SysCap that
consists of three main parts: docker image parser, libc-to-
syscall mapper, and syscall-to-capability mapper.

The docker image parser extracts the called functions from
the given Docker image. The main challenge in this step is to
accurately locate the required binaries of the target application
in a hierarchical Docker image. To solve it, we use the



②libc-to-syscall 

mapper

③syscall-to-capability 

mapper

Secure 

Configuration

①docker image 

parser
Docker 

Image

Required 

Binaries

Required 

Syscall

Required 

Capabilities

Fig. 1: The Architecture of SysCap

Dockerfile of the target Docker image to rebuild the linear
relation between different layers that are stored disorderly
in a Docker image and infer the functionality of each layer
automatically. Then, we extract the called functions in the
binaries obtained from the target layer in the Docker image.

The libc-to-syscall mapper builds a mapping table between
libc functions and their corresponding system calls (only once
for a specific libc version) and then transforms the called
functions obtained from docker image parser into required
system calls. To construct calling relations between libc func-
tions and corresponding system calls, this module solves two
challenges: accurate system call identification and complete
calling relation construction in libc. Since the ways to pass
the system call number to registers vary, we propose a method
called Register Value Backtracking to accurately track the
system call numbers. After identifying all system calls, we
develop an efficient algorithm to obtain a complete calling
relation from libc functions to their corresponding system
calls since the number of libc functions is large and the
calling relations are complex. Finally, using the libc-to-syscall
mapping table, we transform the called functions obtained
from docker image parser into required system calls.

The syscall-to-capability mapper is responsible for gener-
ating a mapping table between system calls and their cor-
responding capabilities. To achieve this, the main challenge
is to identify all positions that check for capabilities in the
Linux kernel and to execute system call reachability analysis.
In our solution, we first compile the Linux kernel into a
single-file LLVM bytecode using wllvm [11] and identify
capability checking functions that take a specific capability
as a parameter. Then, we check all positions that call these
capability checking functions and mark the corresponding
capabilities. Next, we execute the system call reachability
analysis, which checks whether there exists a path from system
call entries to these capability checking positions. Finally,
using the syscall-to-capability mapping table, we obtain the
required capabilities via transforming the invoked system calls
obtained from the libc-to-syscall mapper.

IV. DOCKER IMAGE PARSER

The docker image parser extracts the called functions in the
binaries obtained from the target layer of the Docker image.
First, it obtains the layer relations of the image via analyzing
the configuration file. Second, it obtains the semantic of each
layer by comparing the layer relations with the Dockerfile.
Finally, it locates the target layer in the image and obtains all
binaries in the target layer.

A. Layer Relation Construction

Since the organizational structure of a Docker image is com-
plicated and layers in a Docker image are stored disorderly,
we cannot directly build the relation between layers from the
original image. Fortunately, we can extract all layers of a
Docker image by applying the docker save command and
each layer is within a folder, containing a json configuration
file. As each json file contains the current layer ID and its
parent layer ID, i.e., hash values, the relation between different
layers can be constructed.

Table I shows an example on constructing the layer relation
for the redis image. The image contains six layers in total.
Starting from layer 6102 whose in-degree is 0, we know its
parent layer is ae36. Similarly, we know that the parent layer
of ae36 is d11c. By analyzing all the layer relations recorded
in the json files, we get the chain relation for the six layers.
Note that no matter what the Docker image is, we always
obtain a one-way and acyclic chain relation between different
layers due to the hierarchical structure between layers. Hence,
the layer with an in-degree of 0 is always the start layer, and
the layer with an out-degree of 0 is the end layer.
TABLE I: Dockerfile commands and layer dependency con-
struction for the redis image.

Dockerfile Commands Layer Parent

FROM debian:buster-slim 9297 null

RUN groupadd -r -g 999 redis && useradd -r -g redis -u 999 redis 1a7d 9297

RUN wget -O /usr/local/bin/gosu ”/download/$GOSU VERSION”; \ afac 1a7d

RUN
wget -O redis.tar.gz ”$REDIS DOWNLOAD URL”; \

d11c afac
...

RUN mkdir /data && chown redis:redis /data ae36 d11c

COPY docker-entrypoint.sh /usr/local/bin 6102 ae36

B. Layer Function Extraction

Due to the multiple files in each layer, it is time-consuming
and difficult to manually analyze the main function of each
layer. Fortunately, a text document named Dockerfile [13]
records how each layer is constructed from Dockerfile com-
mands, showing the main function of each layer. For example,
Table I shows a Dockerfile of the redis image that consists
of six Dockerfile commands with all capital letters, e.g., FROM
and RUN. According to the building process of a Docker
image, each building command forms a layer in the image
one after another. After knowing the chain relation between
the six layers, we can establish a one-to-one correspondence
between the Dockerfile commands and the image layers. For
instance, the first image layer named 9297 builds a Debian
operating system with the buster-slim version, and the second
image layer named 1a7d adds a user called redis to a group.

Since a Dockerfile command can span multiple lines, we
can split those commands based on two observations: (1) the
Dockerfile commands are all at the beginning of a line, and
other general commands follows them; (2) all the letter in
the keywords of Dockerfile commands are capitalized, and
other general commands are usually lowercase. By scanning
the Dockerfile line by line, we can split Dockerfile commands



and build a one-to-one correspondence between Dockerfile
commands and image layers. Thus, the main function of each
layer can be known from related Dockerfile commands.

After building the correspondence between Dockerfile com-
mands and image layers, we can locate the target layer in the
image and obtain all binaries in this layer. Since the Docker
image uses the UnionFS file system, each layer is relatively
independent and has complete files to execute its function.
Hence, we only need to extract all binaries located in the
target layer which realizes the core function of an image.
Since we have obtained the function of each layer, it is easy to
identify the target layer from all layers. Typically, the target
layer installs the target application with the RUN Dockerfile
command. As shown in Table I, the target layer is layer d11c,
which installs the redis application in the redis image
using the RUN command.

V. LIBC-TO-SYSCALL MAPPER

The libc-to-syscall mapper analyzes the library to construct
a mapping table between libc functions and their correspond-
ing system calls. We first solve the difficulty of identifying
system calls in a library using Register Value Backtracking.
Next, we propose an efficient algorithm to improve the per-
formance when constructing the calling graph for libc.

A. Syscall Identification

We need to identify which system calls, i.e., system call
numbers, are invoked of libc functions. A system call is usually
invoked in two steps: (1) a system call number is passed
to the register eax or rax; (2) a system call instruction
(i.e., syscall) is called to complete related kernel functions.
However, there are various ways to pass system call numbers
to registers. Fig. 2 shows several typical ways of passing
system call numbers.

# syscall number:  0xca, syscall: futex

bb ca 00 00 00       mov    $0xca,%ebx

…

89 d8                mov    %ebx,%eax

0f 05                syscall 

(a)

# syscall number: 0xca, syscall: futex

b8 ca 00 00 00     mov    $0xca,%eax

48 8d 3d d7 32 0b 00    lea    0xb32d7(%rip),%rdi

0f 05     syscall

(b)

# syscall number:  0x0, syscall: read

31 c0                xor    %eax,%eax

0f 05                syscall 

(c)

# syscall number:  0xf, syscall: rt_sigreturn

48 c7 c0 0f 00 00 00     mov    $0xf,%rax

0f 05     syscall 

(d)

Fig. 2: Different Ways for Passing System Call Numbers

To accurately identify the required system calls of libc
functions, we develop a method called Register Value Back-
tracking. We first disassemble the library into the assembly
code using the disassembly tool objdump. Next, we split
the assembly code into pieces according to the system call
invoking instruction syscall. Finally, we backtrack the
position of register eax or rax from the syscall instruction
to obtain correct syscall numbers. For patterns in Fig. 2(b) and
Fig. 2(d), if a constant is passed to eax or rax, we keep this
number and continue backtracking another system call. If there
is another register when tracking back to eax, we backtrack
the value of this register until we get the final syscall number,
for pattern in Fig. 2(a). If there is a numerical calculation like

xor, we calculate this result and assign it to eax, solving the
problem in Fig. 2(c).

We change obtained system call numbers to corresponding
system call names with a system file named unistd_64.h
that records the correspondence between a system call number
and its name. To help construct the mapping table, we insert
these system call names into original assembly codes with
special marks. For example, we mark syscall read in
the position where the read system call is invoked in the
assembly codes.

B. Syscall Mapping Table Construction

We observe that most libc functions call other libc func-
tions to invoke system calls, instead of invoking system calls
directly. Also, the calling relation among libc functions can
be complex and may generate calling loopbacks. To model
the calling relation between functions, we develop an efficient
algorithm to generate a calling graph for libc. By analyzing
the nodes in the calling graph, we know what system calls are
invoked by a libc function.

Building a calling graph requires the direct calling relation
between functions, i.e., directed edges in the graph. Since
function calling has a fixed format in assembly code, when
we disassemble libc into assemble code, each caller function
is included inside ‘⟨’ and ‘⟩’, followed by a ‘:’ symbol and
each callee function exists in the implementation of the caller
function and inside ‘⟨’ and ‘⟩’. Thus, to obtain the calling
relation, we scan the assembly code with ‘⟨’, ‘⟩’, ‘:’, and
syscall marks as keywords. If ‘⟨’ and ‘⟩’ are followed by ‘:’,
the function inside ‘⟨’ and ‘⟩’ is the caller function. From the
line of the caller function to the line of the next caller function,
all the functions and the system calls between the two lines
are the callee functions. By scanning all the assembly codes,
we can get the direct calling relations of all functions.

A → B

B → C

C → D

D → E

E: {A, B, C, D}

Obtaining Initial-Level 

Call Relation

Generating Complete 

Calling Relation

Outputting 

Result

A B C D E

A

B

C

D

E

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

1

0

E: {D}

A B C D E

A

B

C

D

E

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

E: {D}

A B C D E

A

B

C

D

E

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

1

0

0

0

1

1

0

E: {C, D}

A B C D E

A

B

C

D

E

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

1

1

0

E: {C, D}

A B C D E

A

B

C

D

E

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

1

0

0

1

1

1

1

0

1

1

1

1

0

E: {A, B, C, D}

A B C D E

A

B

C

D

E

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

1

1

1

1

0

E: {A, B, C, D}

Fig. 3: An Example of Building Function Call Relation

Due to the large number and the complex calling relation,
the traditional algorithms to check if there are indirect calling
relations between two function nodes will suffer from huge
performance overhead. For example, to solve the transitive
closure problem in the directed graph, the time complexity
of the classic Floyd–Warshall algorithm [14] is O(n3). To
solve this problem, we propose an efficient algorithm to
extract what system calls are invoked for each function in
libc. Specifically, we number all libc functions and system
calls using consecutive integers (the sequence numbers of all
system calls will be in a centralized range due to special
marks), and apply a Boolean adjacency matrix to represent the
calling relations. Since what we want to know is the calling



relation from libc functions to the corresponding system calls,
intermediate nodes which chain the calling can be ignored and
only the callings to system calls will be focused.

We use an example to illustrate how we find calling relations
from libc functions to the corresponding system calls. As
shown in Fig. 3, A, B, C, and D are libc functions and E
is a system call. Function A calls function B, which calls
function C, which calls function D, and finally function D
invokes system call E. Based on the initial calling relation,
the corresponding bits are set to 1 in the Boolean adjacency
matrix. Since only the function D can invoke system call
E, the reachable set of system call E has an element of D.
Later, any function calling functions in the reachable set will
be added. Repeat this step until all reachable functions are
added to this set. Finally, the complete calling relations can
be obtained in the final adjacency matrix from libc functions
to the corresponding system calls. The detailed algorithm is
shown in Algorithm 1.
Algorithm 1 Building the Mapping Table
Input: A pre-processed assembly code of libc
Output: A mapping table from libc functions to corresponding system calls
1: // Relation Initialization
2: number all functions and system calls using consecutive integers (total N )
3: initialize the Boolean adjacency matrix (N ∗ N) to 0
4: for node i ∈ N do
5: for node j ∈ N do
6: if existing calling relation from node i to j then
7: matrix[i][j] = 1
8: end if
9: end for

10: end for
11: // Complete Calling Relation Generation
12: for node j ∈ number scope of system calls do
13: for node i ∈ N do
14: if matrix[i][j] == 1 then
15: add i to reachable set of system call j
16: add all functions that call functions in the reachable set
17: end if
18: end for
19: end for
20: // Calling Relation Filtering
21: for node i ∈ N do
22: for node j ∈ number scope of system calls do
23: if matrix[i][j] == 1 then
24: output function i: syscall j
25: end if
26: end for
27: end for

C. System Calls Extraction

We extract the required system calls for the binaries ob-
tained from the Docker image. Since programs invoke system
calls by calling the libc functions, we first identify function
names in target binaries and then obtain the corresponding
system calls from the constructed libc-to-syscall mapping
table. We generate binary symbol tables, containing symbol
types and names, using the readelf tool to help identify
function names in target binaries. After comparing the ob-
tained functions with the libc-to-syscall mapping table, we can
filter out libc functions and their corresponding system calls.

When the binaries leverage a third-party library that calls
libc functions to invoke system calls, we cannot directly obtain
the invoked system calls via the libc-to-syscall mapping. To
solve this problem, we apply the ldd tool to obtain all
dependency libraries of the binary and then build a mapping

for each library. The building procedure is similar to that
in Section V. In a few cases where the binary may directly
invoke system calls via passing system call numbers to eax or
rax instead of calling libc functions, we extract these system
calls using Register Value Backtracking method described
in Section V-A. Therefore, all invoked system calls can be
extracted no matter if they are directly invoked by passing
constants to the specific registers or indirectly invoked by
calling libc functions. There are some system calls that are
used for creating the running environment only and cannot be
obtained from profiling a Docker image statically. To obtain
these system calls, we monitor the startup process of different
containers and dump system logs that record the required
system calls in this phase. We find that the startup of Docker
containers is mainly done by the runc process and such
system calls are fixed when specifying a runc version, as
shown in Table II.
TABLE II: Required syscalls to create container running
environment.

Functionality System Call

ID getppid, setgid, setgroups, setuid

File
chdir, close, epoll ctl, epoll pwait, fchown, fcntl, fstat, fstatfs,
getdents64, newfstatat, openat, read, write

Process execve, prctl, sched yield
System futex, nanosleep
Capability capget, capset

VI. SYSCALL-TO-CAPABILITY MAPPER

Customizing required system calls for an image can enhance
the security; however, some system calls will require specific
capabilities to guarantee their normal running. The syscall-
to-capability mapper is responsible for generating a mapping
table between system calls and their required capabilities.

To obtain syscall-to-capability mapping table, we first com-
pile the Linux kernel into one LLVM bytecode and translate
the bytecode into LLVM IR using wllvm [11]. After resolving
indirect calls using struct-type [12], over 4 million lines of
IR codes are generated, in which detailed implementation
of system calls and kernel functions are included. Then we
identify capability checking functions that take a specific
capability as a parameter. There are 3 security functions
used for capability checking, i.e., capable, ns_capable,
and avc_has_perm_noaudit [12]. When analyzing the
kernel IR code, we extend the capability checking functions
to 34, in which one of the parameters is i32 %cap. For
instance, the function has_capability passes two param-
eters: %struct.task_struct* %t and i32 %cap. We
mark function has_capability as a capability checking
function and the position to check the capability is param-
eter 2. Table III lists the information of capability checking
functions and capability position in parameters.

After identifying all capability checking functions and ca-
pability positions in parameters of these functions, we need
to know which kernel functions call these capability check-
ing functions and which capabilities are checked. Thus, we



TABLE III: Capability checking functions and position for
capability in parameters.

Function Pos Function Pos Function Pos

capable 1 security capable 3 has capability noaudit 2
ns capable 2 amd iommu capable 1 pci find ext capability 2
sk capable 2 ns capable noaudit 2 pci bus find capability 3
cap capable 3 netlink ns capable 3 security capable noaudit 3
file ns capable 3 intel iommu capable 1 pci find next capability 3
has capability 2 netlink net capable 2 capable wrt inode uidgid 2
sk ns capable 3 sk filter trim cap 3 has ns capability noaudit 3
sk net capable 2 cred has capability 2 snd seq event port attach 3
netlink capable 2 pci find capability 2 snd hda override amp caps 4
selinux capable 3 vm enough memory 3 ieee80211 ie build vht cap 3
iommu capable 2 netlink ns capable 3 pci find next ext capability 3
has ns capability 3

take the capability checking functions as the keywords and
the capability positions as the matching patterns to locate
all positions that check capabilities and mark these capa-
bilities specially, e.g., mark CAPABILITY_0 for capability
CAP_CHOWN. In the implementation of system call setgid,
function ns_capable is called with parameter 6 in the ca-
pability position, thus we mark this function calling statement
as CAPABILITY_6. By inquiring the official document [15],
we see capability 6 corresponds to CAP_SETGID, allowing
system call setgid manipulation.

With the identified capability checking positions, we pro-
pose system call reachability analysis to ensure these capabil-
ity checking positions can actually be reached from a specific
system call. Our idea of system call reachability analysis is
two-fold. First, we process the kernel IR code into a specific
format, which means keeping function names and special
capability marks only. To achieve this, we use the regular
expression and script to delete all other information. Second,
we perform control-flow analysis based on the kernel control
flow graph. If there is a path from a specific system call to the
capability checking positions, we keep this correspondence to
the syscall-to-capability mapping table. After comparing the
invoked system calls obtained from the libc-to-syscall mapper
with the syscall-to-capability mapping table, the required
capabilities can be extracted and a secure configuration for
a specific container is generated, including the customized
whitelists for both system call and capability.

VII. IMPLEMENTATION

We implement the docker image parser with Shell scripts.
First, we extract all layers of the image using docker save
command and obtain the relations of all layers based on
parsing configuration file in each layer. By comparing the
Dockerfile with all layers in the image, we obtain the function
of each layer and then extract all binaries in the target layer.

We implement the libc-to-syscall mapper with C/C++ and
Python. We first disassemble libc into assembly code and
preprocess it to delete function-irrelated codes. Then we split
the preprocessed code into pieces according to system call
invoking instructions. Furthermore, we use the Register Value
Backtracking method to obtain the system call numbers. By

comparing system call numbers with a system call table in
unistd_64.h, we obtain the corresponding system call
names. Next, we output the libc-to-syscall mapping table based
on Alg. 1. Finally, we compare the called functions obtained
in the binaries obtained from docker image parser with libc-
to-syscall mapping table to obtain the required system calls.
To get the system call list for container startup, we set
seccomp filter as the logging mode with the SCMP_ACT_LOG
parameter to record all system calls filtered by seccomp.

Applications in containers may be constructed by different
programming languages and most of these languages rely on
libc to implement the system call invoking. We can apply the
methods in Section V to parse all dependency libraries and
build a mapping table for each library. Then, the required sys-
tem calls can be obtained by chaining all mapping tables until
libc-to-syscall mapping. However, for Go, it has its own way
to invoke system calls by calling syscall.Syscall and
syscall.RawSyscall functions. Through observation, for
a go binary, the system call is invoked by passing a constant to
rsp register, e.g., “mov 0x27, (rsp)” to invoke getpid
system call, and then calling system call invoking functions.
Thus, we obtain the invoked system calls for go applications
by matching this fixed pattern.

We write a pass based on LLVM to implement the syscall-
to-capability mapper. First, we compile the Linux kernel into
an LLVM bytecode using wllvm [11] and resolve indirect
calls based on struct-type [12]. Then we extend capability
checking functions and locate the capability location of pa-
rameters in these functions to identify all capability checking
positions and their corresponding capabilities. Next, we delete
all function-unrelated IR codes and generate a kernel con-
trol flow graph. Finally, we perform system call reachability
analysis and generate the syscall-to-capability mapping table.
After comparing the required system calls for a Docker image
with the syscall-to-capability mapping table, we obtain the
capabilities that should be enabled when running the container.

VIII. EXPERIMENTAL RESULTS

A. Experiment Setup

We conduct experiments on a computer with an Intel i5-
8265U 1.6GHz 4-core processor and 8GB of RAM. It runs
Ubuntu 18.04 with Linux kernel 4.10, GNU C Library (glibc)
2.29, and Docker 20.10.2. To facilitate the comparison with
previous works, we adopt the same container image dataset
used by the Confine [9]. It consists of 193 popular Docker
official images pulled from the Docker Hub [16], whose down-
loads reached over 10 million. These images can be generally
classified into 5 categories in terms of their functionality, i.e.,
database, OS, DevOps, language, and infrastructure.

B. System Call Reduction

Fig. 4 compares the system call whitelist obtained
via SysCap and dynamic tracking method over 5 categories
of Docker images. We can see that for each tested container,
the system call whitelist obtained by SysCap is much smaller
than the default list and contains the system call whitelist



 0

 100

 200

 300

 400

1 10 20 30 40 47

N
um

be
r 

of
 S

ys
ca

ll

Image ID

(a) Database

 0

 100

 200

 300

 400

1 5 10 15 20

N
um

be
r 

of
 S

ys
ca

ll

Image ID

(b) OS

 0

 100

 200

 300

 400

1 11 21 31 41

N
um

be
r 

of
 S

ys
ca

ll

Image ID

(c) Infrastructure

 0

 100

 200

 300

 400

1 10 20 30 40

N
um

be
r 

of
 S

ys
ca

ll

Image ID

(d) Language

 0

 100

 200

 300

 400

1 9 18 27 36 45

N
um

be
r 

of
 S

ys
ca

ll

Image ID

(e) DevOps

Fig. 4: Numbers of Required Syscall. The dashed gray line is the default setting, the solid red line is SysCap, and the dotted
blue line is dynamic tracking.

by the dynamic tracking method. Moreover, the difference
between SysCap and dynamic tracking method is small
for four categories, i.e., Database, Infrastructure, Language,
and DevOps. It shows that our static analysis solution can
achieve completeness without sacrificing too much soundness.
For the OS category, the larger difference is because OS
containers provide many general commands and programs for
all applications, but many commands and programs may not
be executed during the dynamic tracking process.

Overall, dynamic tracking and SysCap finds 105 and 127
system calls on average, respectively. It is reasonable to
finds more system calls by static analysis techniques than the
dynamic tracking techniques. When performing dynamically
tracking, it is challenging to cover all branches for containers
even if with the assistance of the fuzzing technique [17].
In contrast, our static analysis work can ensure a complete
whitelist that includes around 20 system calls on average more
than the dynamic tracking.

SysCap can reduce up to 78% system calls and 62%
system calls on average for all 193 containers (see Fig. 5).
The average system call reduction rate for each category is
63.3% (Database), 42.6% (OS), 67.6% (Infrastructure), 62.8%
(Language) and 64.6% (DevOps), respectively. Even for the
worst OS category, the system call reduction rate can reach
about 35% at least and 53% at most. For other four categories,
system call reduction rate shares the similar results, ranging
from 45% to 78%.

C. Vulnerability Reduction

We explore a set of exploitable vulnerabilities that can be
mitigated by leveraging the system call whitelist generated by
SysCap. We collect all vulnerabilities from Common Vulner-
abilities and Exposures (CVE) [18] in recent six years, which
leverage specific system calls to launch attacks.

We define the vulnerability reduction rate for a container
as the number of vulnerabilities that can be disabled by
eliminating unnecessary system calls with SysCap to the total
number of vulnerabilities. As shown in Fig. 6, we summarize
the vulnerability reduction rate for tested container dataset,
obtained via limiting the system calls that may trigger the
vulnerability in containers. From the figure, we can see
that almost all the vulnerabilities reduction rate are stable
between 60% and 80%, which means that by setting the
system call whitelist for the containers, more than 60% of the
software vulnerabilities can be directly blocked. Specifically,

SysCap can achieve more than 55% vulnerability reduction
rate for all these containers, so over half number of existing
vulnerabilities can be prevented. The vulnerability reduction
rate for 70% OS-related containers can reach to at least 60%.
Moreover, SysCap performs the best for containers in the
language category, i.e., more than 80% vulnerability reduction
rate for about 40% containers. Indeed, our experimental results
prove that disabling unused system calls with SysCap can
reduce the attack surface of containers.

D. Comparison with State-of-the-Art work

Existing studies [6]–[8] dynamically profile system calls for
containers. However, as demonstrated by Confine [9], they
may miss a number of required system calls. Hence, we
compared our tool with the state-of-the-art system Confine [9]
that combines dynamic and static analysis in aspects of the
efficacy and accuracy. Confine extracts required system calls
for containers in two steps: (1) it needs to manually configures
and run a container in a period to monitor called binaries and
libraries; (2) it statically analyzes called binaries and libraries
to extract required system calls. However, 43 out of 193
images cannot be analyzed by Confine [9] due to complex con-
figuration settings and prerequisite containers, which denotes
a success rate of 77.7%. In contrast, SysCap statically extracts
binaries from Docker images and our experiments demonstrate
that SysCap can fully automatically extract system calls from
all the 193 images, with a 100% success rate.

We further compare the number of system calls filtered
by SysCap and Confine [9] on the top 15 most popular official
images. As shown in Table IV, we find that SysCap can ex-
clude more unnecessary system calls for 13 out of 15 images.
The only exception is on OS-related images (i.e., Ubuntu and
CentOS) where Confine filters more system calls. We figure
out two main reasons. First, in the source code of Confine [19],
they maintain a system call blacklist and use two except
lists (i.e., exceptList and javaExceptList [20]) for
all containers. Since these two except lists contains 87 system
calls, no matter what containers they run, its required system
call list would have at least 87 system calls. However, Confine
does not prove the necessity of these 87 system calls. When we
implement SysCap, we extract the required system call based
on the target binaries. In this way, we can obtain a more precise
system call list that filters more unnecessary system calls.

Second, Confine may miss some system calls since it only
records the called binaries and libraries in a fixed running



0

20

40

60

80

100

20 40 60 80 100

C
D

F
 (

%
)

System Call Reduction Rate (%)

Database
OS
Language 
Infrastructure
DevOps

Fig. 5: CDF of System Call Reduction

0

20

40

60

80

100

50 60 70 80 90 100

C
D

F
 (

%
)

Vulnerability Reduction Rate (%)

Database
OS
Language 
Infrastructure
DevOps

Fig. 6: CDF of Vulnerability Reduction

TABLE IV: Comparison Between SysCap and Confine [9] on
number of filtered system calls and vulnerability reduction rate
for the top 15 most downloaded images.

Image* Filtered System Calls Vulnerability Reduction

Confine SysCap Confine SysCap

couchdb 157 240 (+83) 50% 68% (+18%)
ubuntu 198 135 (-63) 68% 66% (-2%)
alpine 162 165 (+3) 65% 70% (+5%)
redis 179 223 (+44) 58% 62% (+4%)
node 170 192 (+22) 62% 64% (+2%)

postgres 141 213 (+72) 52% 66% (+14%)
mysql 149 183 (+34) 60% 64% (+4%)
nginx 177 188 (+11) 67% 68% (+1%)
mongo 152 193 (+41) 53% 60% (+7%)
python 154 177 (+23) 66% 70% (+4%)
traefik 211 246 (+35) 59% 66% (+7%)

mariadb 139 177 (+38) 62% 68% (+6%)
httpd 175 199 (+24) 66% 70% (+4%)

golang 197 198 (+1) 78% 78% (+0%)
centos 199 120 (-79) 76% 74% (-2%)

*Images were ranked based on total downloads as of May 27, 2021.

period of containers, especially for OS-related ones. In the
operating system, although there are hundreds of general com-
mands, only about ten commands would be executed during
startup period. Failing to consider binaries executed during
the running time will lead to an incomplete invoked system
call list, which disables some normal functionalities. For
instance, in ubuntu container, a user can create a directory
using mkdir command, which invokes mkdir system call.
However, when Confine customizes the required system calls
for ubuntu, since the mkdir command does not run during
startup period, Confine blocks the mkdir system call [21],
causing users to be unable to use the mkdir command.

E. Capability Mapping

We conduct experiments to verify the correctness of the
syscall-to-capability mapping table, which consist of compar-
ing it with official description and running customized system
call and capability list for a specific container.

We first compare the syscall-to-capability mapping table
with the official document [15], which describes the func-
tionality and possible system calls for each capability. For
example, in the description of capability CAP_SETGID, it

allows system call setgid and setgroups manipulation,
and it allows gids on socket credentials passing. Meanwhile,
in the syscall-to-capability mapping table, the required system
calls for capability CAP_SETGID are setfsgid, setgid,
setgroups, setregid, and setresgid. By comparing
the official description and the syscall-to-capability mapping
table for capability CAP_SETGID, we can know that our
mapping result is reasonable and we can help make offi-
cial descriptions clear. Similarly, we compare the syscall-to-
capability mapping table with the official description for each
capability, and the result shows the correctness of our mapping.

Next, we run all containers in the image dataset with
generated system call and capability list (obtained from com-
paring the generated system calls with the syscall-to-capability
mapping table), all containers run normally under artificial
loads. For example, for hello-world container, it requires
26 system calls for normal running and requires 0 capabilities;
and for redis container, it invokes 91 system calls and re-
quires 3 capabilities, i.e., CAP_SETGID, CAP_SETUID, and
CAP_SYS_RESOURCE. In general, the required capabilities
for all containers range from 0 to 16, and 78.5% of containers
require less than 7 capabilities. On average, 5.3 capabilities
are required and about 4% of containers require more than 14
capabilities. The experiment shows that the attack surface can
be further reduced with the help of capability customization.

IX. RELATED WORK

System Call Profiling for Containers. Removing unnecessary
system calls can significantly reduce the attack surface for
containers. Wan et al. [6] dynamically profile invoked system
calls for containers with different workloads. Lei et al. [7] split
the container running process into phases and dynamically
track invoked system calls. Rastogi et al. [8] divide a container
into multiple isolated sub-containers and dynamically profile
required system calls. As dynamic analysis cannot guarantee
completeness for all required system calls, Ghavamnia et
al. [9] combine dynamic and static analysis by dynamically
launching a container to obtain its running binaries and
libraries and statically analyzing the required system calls
from the extracted binaries. Different from existing studies,
SysCap statically profiles container system calls directly from
images without dynamically running containers.



System Call Profiling for Programs. Besides profiling system
calls for containers, most prior studies focus on profiling
system calls for programs. Zeng et al. [22] construct a stateless
model to generate a system call whitelist. Provos et al. [23]
design system call policies to run with different levels of
privilege. Ghavamnia et al. [24] manually divide the program
running state into two phases and statically profiles required
system calls. DeMarinis et al. [25] statically extract required
system calls from binaries and restricts access by rewriting
binaries. These studies effectively profile system calls from
programs and possibly inspires profiling system calls for con-
tainers. However, they fail to consider the complex structures
in container, thus, we provide SysCap to automatically parse
Docker images to extract the target binaries.
Traditonal Program Analysis. Static program analysis can
generate data flows and control flows for programs, used to
detect bugs and vulnerabilities [26]–[28], validate patches [29],
and reduce unnecessary path access in programs [30]. Dy-
namic program analysis is used to monitor and slice pro-
grams [31], [32], locate bugs in programs [33]–[35], and
perform code coverage fuzz testing [36], [37]. We apply static
analysis in SysCap to automatically obtain the required system
calls and capabilities for a specific container.

X. CONCLUSION

In this paper, we design SysCap to automatically generate
required system calls and capabilities for Docker images.
It statically analyzes libc to build a mapping between libc
functions and their corresponding system calls and analyzes
the Linux kernel to construct a mapping between system
calls and the related capabilities. Given a Docker image, it
extracts the called functions of the binaries in the target layer
and compares them with these two mappings to obtain the
required system calls and capabilities. Our experiments with
193 popular images demonstrate that SysCap can filter 62%
unnecessary system calls and reduce more than a half default
capabilities on average, reducing the attack surface hugely.

REFERENCES

[1] N. Yang, W. Shen, J. Li, Y. Yang, K. Lu, J. Xiao, T. Zhou, C. Qin,
W. Yu, J. Ma et al., “Demons in the shared kernel: Abstract resource
attacks against os-level virtualization,” in Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, 2021.

[2] “capability,” https://man7.org/linux/man-pages/man7/capabilities.7.html.
[3] “Seccomp,” https://man7.org/linux/man-pages/man2/seccomp.2.html.
[4] “DefCap,” https://github.com/moby/blob/master/oci/caps/defaults.go.
[5] “Seccomp profiles,” https://docs.docker.com/engine/security/seccomp/.
[6] Z. Wan, D. Lo, X. Xia, L. Cai, and S. Li, “Mining sandboxes for linux

containers,” in IEEE ICST, 2017.
[7] L. Lei, J. Sun, K. Sun, C. Shenefiel, R. Ma, Y. Wang, and Q. Li,

“Speaker: Split-phase execution of application containers,” in Inter-
national Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2017, pp. 230–251.

[8] V. Rastogi, D. Davidson, L. De Carli, S. Jha, and P. McDaniel,
“Cimplifier: automatically debloating containers,” in Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, 2017.

[9] S. Ghavamnia, T. Palit, A. Benameur, and M. Polychronakis, “Confine:
Automated system call policy generation for container attack surface
reduction,” in 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020), 2020.

[10] “Dockerslim,” https://github.com/docker-slim/docker-slim.

[11] “Whole program llvm: a wrapper script to build whole- program llvm
bitcode files,” https://github.com/ travitch/whole-program-llvm.

[12] T. Zhang, W. Shen, D. Lee, C. Jung, A. M. Azab, and R. Wang,
“Pex: A permission check analysis framework for linux kernel,” in 28th
{USENIX} Security Symposium ({USENIX} Security 19), 2019.

[13] “Dockerfile Reference,” https://docs.docker.com/engine/reference/builder.
[14] “Transitive closure,” https://en.wikipedia.org/wiki/Transitive closure.
[15] “capability definition,” https://elixir.bootlin.com/linux/latest/source/inclu-

de/uapi/linux/capability.h#L146.
[16] “Docker Hub,” https://hub.docker.com/.
[17] “Fuzzing,” https://en.wikipedia.org/wiki/Fuzzing.
[18] “Common Vulnerabilities and Exposure,” https://cve.mitre.org/.
[19] “Confine source code,” https://github.com/shamedgh/confine.
[20] “The core implementation of confine source code,” https://github.com/

shamedgh/confine/blob/master/containerProfiler.py.
[21] “Confine customizes the system call blacklist for ubuntu image,”

https://github.com/shamedgh/confine/blob/master/sample.results/ubuntu.
seccomp.json.

[22] Q. Zeng, Z. Xin, D. Wu, P. Liu, and B. Mao, “Tailored application-
specific system call tables,” The Pennsylvania State University, 2014.

[23] N. Provos, “Improving host security with system call policies.” in
USENIX Security Symposium, 2003, pp. 257–272.

[24] S. Ghavamnia, T. Palit, S. Mishra, and M. Polychronakis, “Temporal
system call specialization for attack surface reduction,” in 29th USENIX
Security Symposium (USENIX Security 20), 2020.

[25] N. DeMarinis, K. Williams-King, D. Jin, R. Fonseca, and V. P. Kemerlis,
“sysfilter: Automated system call filtering for commodity software,” in
23rd International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2020), 2020, pp. 459–474.

[26] Y. Sui and J. Xue, “Svf: interprocedural static value-flow analysis in
llvm,” in Proceedings of the 25th international conference on compiler
construction. ACM, 2016, pp. 265–266.

[27] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
flow bending: On the effectiveness of control-flow integrity,” in 24th
{USENIX} Security Symposium ({USENIX} Security 15), 2015.

[28] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in NDSS, 2016.

[29] D. A. Ramos and D. Engler, “Under-constrained symbolic execution:
Correctness checking for real code,” in 24th {USENIX} Security Sym-
posium ({USENIX} Security 15), 2015, pp. 49–64.

[30] J. Lerch, J. Späth, E. Bodden, and M. Mezini, “Access-path abstraction:
Scaling field-sensitive data-flow analysis with unbounded access paths
(t),” in 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2015, pp. 619–629.

[31] B.-A. Stoica, S. K. Sahoo, J. R. Larus, and V. S. Adve, “Wok: statistical
program slicing in production,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion). IEEE, 2019, pp. 324–325.

[32] M. Ward and H. Zedan, “The formal semantics of program slicing
for nonterminating computations,” Journal of Software: Evolution and
Process, 2017.

[33] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
pp. 707–740, 2016.

[34] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
in Proceedings of the 39th International Conference on Software Engi-
neering. IEEE Press, 2017, pp. 609–620.

[35] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE
Transactions on Software Engineering, 2019.

[36] R. Padhye, C. Lemieux, and K. Sen, “Jqf: Coverage-guided property-
based testing in java,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA’19),
2019.

[37] A. Sakti, G. Pesant, and Y.-G. Guéhéneuc, “Instance generator and
problem representation to improve object oriented code coverage,” IEEE
Transactions on Software Engineering, 2014.


