
SysCap: Profiling and Crosschecking Syscall and
Capability Configurations for Docker Images

Yunlong Xing, Jiahao Cao, Xinda Wang, Sadegh Torabi,

Kun Sun, Fei Yan, Qi Li

Outline

• Background

• Overview of Container Security

• Challenges

• SysCap Design

• Evaluation

• Conclusion

2

Virtual Machine vs Container

3

VM Container

Virtualization Hardware-
assistant OS

Sharing Hardware Hardware &&
OS kernel

Container Security

• Both seccomp filters and capabilities play an important part in
reducing the risks of container escape

• Seccomp can be used for blocking unnecessary system calls
Ø 44 syscalls are disabled by default

• Capability works as a gatekeeper before certain system calls are
triggered
Ø 14 (out of 41) capabilities are enabled by default

4

Challenges

• Existing solutions mainly focus on system call reduction and utilize
dynamic tracking to obtain the required system calls
Ø Simple, but requiring heavy human efforts and an incomplete coverage

Ø Ignoring capability may block execution of some system calls

• Static analysis can get a complete result, however
Ø Layered and disordered image à target program

Ø Target program à related syscall and capability

5

SysCap Architecture

6

②libc-to-syscall
mapper

③syscall-to-capability
mapper

Secure
Configuration

①docker image
parser

Docker
Image

Required
Binaries

Required
Syscall

Required
Capabilities

• Goal: Obtaining the required syscall and capabilities for a Docker image via static
analysis

Docker Image Parser

• Layer Relation Construction
Ø Layers in a Docker image are

stored out-of-order

Ø In each layer, a configuration
file records the layerID and its
parent layerID

Ø Analyzing all configuration files,
we can get the layer chain

7

1

2

3

4

5

6

ID: 1a7d

ParentID:7297

①

ID: 6102

ParentID:ae36

②

ID: 7297

ParentID:null

③

ID: ae36

ParentID:d11c
④

ID: afac

ParentID:1a7d
⑤

ID: d11c

ParentID:afac
⑥

Docker Image Parser

• Layer Function Extraction
Ø Docker image is generated from Dockerfile

Ø Each layer has a corresponding command in Dockerfile

8

Libc-to-Syscall Mapper

• Syscall Identification
Ø In a container, libraries are represented as binaries

Ø For glibc, syscall should be identified first before building the mapping

Ø Syscall numbers will passed to eax or rax, and software interrupt is triggered

9

Libc-to-Syscall Mapper

• Syscall Mapping Table Construction

10

Syscall-to-Capability Mapper

• Syscall-to-Capability mapping
can only be obtained from
analyzing the Linux kernel

• We compile the Linux kernel
into one LLVM bytecode and
analyze all functions that
take a capability as a
parameter

11

Experiment Setup

• Hardware: Intel i5-8265U 4-core processor and 8GB of RAM

• Software: Ubuntu 18.04 with Linux kernel 4.10, GNU C Library (glibc)
2.29, and Docker 20.10.2

• Dataset: 193 popular Docker images that can be classified into 5
categories in terms of their functionality, i.e., database, OS, DevOps,
language, and infrastructure.

12

System Call Reduction

13

The dashed gray line is the default setting, the solid red line is SysCap, and the dotted blue line is dynamic tracking.

Overall, dynamic tracking and SysCap finds 105 and 127 system calls on average.

System Call Reduction

14

• SysCap can reduce up to 78% system
calls and 62% system calls on average

• The average system call reduction
rate for each category is 63.3%
(Database), 42.6% (OS), 67.6%
(Infrastructure), 62.8% (Language)
and 64.6% (DevOps)

Vulnerability Reduction

15

• Almost all the vulnerabilities
reduction rate are stable between
60% and 80%

Comparison with State-of-the-art work

16

Capability Reduction

• With the syscall-to-capability mapping table, we can make the
capability official document clear
Ø e.g., from the mapping, the required syscall for CAP_SETGID are setfsgid,

setgid, setgroups, setregid, and setresgid

• Applying capability customization can reduce the attack surface
further
Ø 78.5% of containers require less than 7 capabilities, and 5.3 capabilities are

required on average

17

Conclusion

• We design SysCap to automatically generate required system calls and
capabilities for Docker images

• SysCap statically obtains a libc-to-syscall mapping and syscall-to-
capability mapping table

• After evaluating 193 popular images, SysCap can filter 62%
unnecessary system calls and more than a half default capabilities,
reducing the attack surface hugely

18

Q & A

