
An Empirical Study of Multi-Language Security
Patches in Open Source Software

Shiyu Sun1, Yunlong Xing1, Grant Zou2, Xinda Wang3, and Kun Sun1

1 George Mason University, Fairfax, VA, USA
2 University of Virginia, Charlottesville, VA, USA

3 University of Texas at Dallas, Richardson, TX, USA

Abstract. Vulnerabilities in software repositories written in multiple
programming languages present a major challenge to modern software
quality assurance, especially those resulting from interactions between
different languages. Existing static and dynamic program analysis tools
are generally constrained to single-language analysis, while current deep-
learning models lack the capability to process cross-language interactions
effectively. To gain deeper insights into vulnerability patterns and patch-
ing behaviors in multi-language code, we conduct a measurement study
on commits associated with multi-language security patches. We first
collect a large-scale dataset of multi-language security patches from the
MITRE corporation. We then analyze trends in language combinations,
assess their proneness to vulnerabilities, and compare the severity of
these vulnerabilities to those in single-language patches. Additionally,
we classify patch patterns based on the types of language interactions to
support automated program repair. To encourage further research, we
release our dataset to the community, fostering deeper investigation into
multi-language security patch development and enhancement.

Keywords: Multi-Languages Open Source Software · Security Patches.

1 Introduction

Multi-language development is increasingly prevalent and essential in modern
software deployment, as applications often integrate multiple technologies to
meet performance, scalability, and functionality demands [6]. Among the millions
of commits involving modifications across multiple languages [5], approximately
6-18% [31,8] are intended to fix cross-language vulnerabilities, remedying critical
risks caused by interactions between different languages.

Several efforts have been made to analyze multi-language software. Li et
al. [17] studied multi-language software and revealed a statistical connection
between language selection, vulnerability proneness, and interfacing mechanisms
of multilingual projects. However, it cannot represent the association at the
commit level since not all commits in the multilingual projects involve multiple
programming languages. Moreover, other papers have worked on detecting multi-
language vulnerabilities [23,22,33,12,32]. However, they either only focus on one

2 S. Sun et al.

language combination (e.g., Python-C or Java-C) or neglect the fixes for the
bug. Additionally, they fail to explain why and how vulnerabilities are triggered
or fixed across multiple languages. Furthermore, large language models (LLMs)
can analyze code and have different domain knowledge to understand multiple
programming languages, but they struggle to capture the full context when the
input is large. Therefore, we can conclude that there is no existing labeled multi-
language security patch dataset and the existing tools cannot be transferred to
analyze different language combinations.

In this paper, we fill this gap by constructing a multi-language security patch
dataset to reveal why different programming languages have been committed
together and how they work together to fix vulnerabilities. Since different lan-
guages can interact with other programming languages across files and in the
same file, we consider two types of commits: (1) commits that modify multiple
files written in different programming languages, and (2) commits that modify
a single file containing inline code from another language. First, we perform a
statistical analysis of the patches, examining their language combinations, patch
complexity, vulnerability categories, and severity levels. Second, we manually
review each security patch to understand how vulnerabilities are fixed based on
interfacing mechanisms. This analysis provides insight into the critical context
needed for vulnerability remediation and its relationship with different types
of vulnerabilities. Finally, we propose a taxonomy summarizing common fixing
patterns, which can help advance automated program repair research.

According to the statistics from IEEE Spectrum [11] and the available data
from MITRE, we focus on 16 popular programming languages, including C, C#,
C++, Go, HTML, Java, JavaScript, Kotlin, Perl, PHP, Python, Ruby, Rust,
Shell, SQL, and TypeScript. We collect 2,798 multi-language security patches,
consisting of 1,253 multi-language security patches across multiple files and 1,545
in a single file. We summarize 11 fixing patterns, including eight for multi-file
fixing and three patterns for single-file fixing.

Among our findings, we identify that multi-language security patches are
more complex than single-language security patches in terms of lines of mod-
ification, branch structure changes, and dependency updates. Multi-language
security patches are also more prone to injection-related vulnerabilities (e.g., OS
command injection and SQL injection), web-related vulnerabilities (e.g., cross-
site scripting (XSS) and cross-site request forgery (CSRF)), and authentication
vulnerabilities. The severity of multi-language vulnerabilities is similar to that of
single-language vulnerabilities. From our manual analysis of patches, we further
observe that multi-language security patch patterns are associated with their
interfacing mechanisms. Single-language security patch patterns can combine to
form part of a multi-language security patch pattern (e.g., one language sanitizes
the input while another validates it). Additionally, non-fixing changes are often
entangled with multi-language security fixes, making code review more difficult.
The findings of our analysis provide insights that suggest paths forward for the
security community to improve vulnerability management.

An Empirical Study of Multi-Language Security Patches 3

Our work provides several contributions. First, we collect the first dataset
of multi-language security patches across 16 languages. Second, we analyze the
characteristics of multi-language security patches. Moreover, we summarize the
fixing patterns of multi-language security patches, revealing the reasons why
different languages have been committed together and highlighting the need for
automated tools to analyze multi-language programs. We release the dataset at
https://figshare.com/Multi-language_Security_Patch_Dataset.

2 Background

2.1 Language Interoperability and Interfacing Mechanisms

Multilingual software leverages the distinct capabilities of various programming
languages. To enable these languages to work together smoothly, they require
effective inter-language interaction or interoperability mechanisms to ensure co-
hesive functionality [24]. We categorize four common interaction mechanisms
with code-level evidence: client-server, foreign function interface (FFI), database
queries, and subprocess execution.
Client-Server. The interaction occurs in three ways: (1) from the client to the
server, (2) from the server to the client, and (3) bidirectionally between both.
Client-side code is typically implemented using HTML for structure, JavaScript
or TypeScript for dynamic behavior, whereas server-side code leverages lan-
guages and frameworks such as JavaScript/Node.js, Python, Java, PHP, C#,
Rust, Go, or Ruby. These components interact bidirectionally, with the client
sending requests to the server and the server processing and returning data or
actions. There are several commonly used methods, often via HTTP requests.
Foreign Function Interfaces (FFI). An FFI is a mechanism that allows code
written in one programming language to call functions or use services written
in another language. FFI is crucial in scenarios where developers leverage ex-
isting libraries, optimize performance, or integrate systems written in multiple
languages. For example, a Python application might use FFI to call a high-
performance C library for numerical computations, or a Rust program might
expose functions via FFI to be used in a Node.js application.
Database Queries. Python, Java, JavaScript, PHP, Ruby, Go, Rust, and C#,
have libraries or frameworks that enable them to access databases and execute
SQL commands. Some of these libraries provide direct SQL execution (e.g., psy-
copg2 in Python), while others offer object-relational mapping (ORM) (e.g.,
Entity Framework in C# or ActiveRecord in Ruby) to simplify database inter-
actions by using an object-oriented approach. In this scenario, SQL statements
are often composed as strings in the function call.
Subprocess Execution. Similar to database queries, many programming lan-
guages offer libraries or built-in methods to execute shell commands, allowing
developers to run system commands directly from their code, including Python,
JavaScript, Java, C/C++, Ruby, PHP, Go, Perl, and Rust.

https://figshare.com/articles/dataset/Multi-language_Security_Patch_Dataset/28447463

4 S. Sun et al.

2.2 Multi-language Security Patch

A software security patch is a set of changes between two versions of source
code to address specific vulnerabilities. Listing 1.1 shows a security patch that
sanitizes user input using htmlentities() to prevent XSS attacks.

1 diff --git a/web/edit/web/index.php b/web/edit/web/index.php
2 --- a/web/edit/web/index.php
3 +++ b/web/edit/web/index.php
4 + $user_plain=htmlentities($_GET[‘user’])
5 diff --git a/.../edit_server.html b/web/templates/pages/edit_server.html
6 --- a/web/templates/pages/edit_server.html
7 +++ b/web/templates/pages/edit_server.html
8 - / <a class="generate" target="_blank" href="/generate/ssl/?

domain=<?=\$v_hostname?>"><?=_(‘Generate CSR’);?>
9 + / <a class="generate" target="_blank" href="/generate/ssl/?

domain=<?=htmlentities(trim($v_hostname,‘"’));?>"><?=_(‘Generate CSR’);?></
span>

Listing 1.1. Security Patch for CVE-2022-0986 on PHP and HTML files.

We refer to security patches that contain more than one language as multi-
language security patches. Language interaction can happen across multiple files
or within a single file, depending on the language, environment, and tools used. In
this paper, we consider both situations and use multi-file multi-language security
patches and single-file multi-language security patches to refer to them.
Multi-file Multi-language Patch. Listing 1.1 shows a security patch fixing
the vulnerability CVE-2022-0986 by modifying the PHP file and the HTML file.
The index.php file escapes the HTML entities of the user, and edit_server.html
escapes the HTML entities of the v_hostname. These two files work together to
resolve the XSS vulnerability.
Single-file Multi-language Patch. Languages can interact in a single-file
setup, which is referred to as embedding or interfacing between languages. Em-
bedding is a program written in one language (like C) that uses another language
(like a shell script) to handle specific tasks. For example, a C program might ex-
ecute shell commands for file manipulation using system(). Interfacing happens
when different languages work together through defined boundaries or protocols,
such as using APIs, libraries, or inter-process communication, which is similar to
multi-file interaction. As shown in Listing 1.2, the patch fixes the SQL injection
by adding a Python sanity check to the field of the vulnerable SQL query.

1 diff --git a/gamespy/gs_database.py b/gamespy/gs_database.py
2 --- a/gamespy/gs_database.py
3 +++ b/gamespy/gs_database.py
4 @@ -367,12 +367,12 @@ def update_profile(self, profileid, field):
5 - with Transaction(self.conn) as tx:
6 - q = "UPDATE users SET \"%s\" = ? WHERE profileid = ?"
7 - tx.nonquery(q % field[0], (field[1], profileid))
8 + if field[0] in ["firstname", "lastname"]:
9 + with Transaction(self.conn) as tx:

10 + q = "UPDATE users SET \"%s\" = ? WHERE profileid = ?"
11 + tx.nonquery(q % field[0], (field[1], profileid))

Listing 1.2. Security Patch for CVE-2020-36631 on SQL in Python file.

An Empirical Study of Multi-Language Security Patches 5

3 Patch Collection

To explore multi-language vulnerabilities and their fixes, we collect security
patches from open-source software. According to the statistics from IEEE Spec-
trum [11] and the available data from MITRE [2], we focus on 16 popular pro-
gramming languages, including C, C#, C++, Go, HTML, Java, JavaScript,
Kotlin, Perl, PHP, Python, Ruby, Rust, Shell, SQL, and TypeScript. We sum-
marize the language type, usage, and language interaction in Table 1.

Table 1. Language Selection.

Languages Type Level Application Language Interaction

C Compiled Low Operating system Assembly and high-level languages
C# Compiled High Game .NET languages and native code
C++ Compiled Low System and game C and other system languages
Go Compiled High Cloud and system C and statically typed languages
HTML Markup - Web page structure Web languages
Java Compiled High Mobile apps JVM and native interfaces
JavaScript Interpreted High Web Web and server-side languages
Kotlin Compiled High Mobile and web Java and other JVM languages
Perl Interpreted High System and web C/C++ and web technologies
PHP Interpreted High Web HTML, JavaScript, and SQL
Python Interpreted High Web and data science C/C++ and web languages
Ruby Interpreted High Web and scripting Scripting languages
Rust Compiled Low System and web C and other system languages
Shell Scripting - System and automation Shell and command line tools
SQL Domain-specific - Database management Database languages
TypeScript Interpreted High Web JavaScript and other frameworks

Our data collection process begins by mining commits associated with CVE
records indexed by MITRE [2]. First, we retrieve vulnerabilities that have been
assigned CVE IDs. Next, we parse the vulnerability reports to extract patch
hyperlinks and save the corresponding commits. We then download all security
patches. To keep only the security patches written in the specified languages,
we analyze the modified file extensions and select those that match the chosen
languages, e.g., .c for C. If there is more than one type of file extension from
different languages, we classify it as a multi-file, multi-language security patch. If
only one programming language is involved, we include it for further analysis. For
multi-file multi-language security patches, we retain all related files and manually
analyze their interactions. For single-file multi-language security patches, we first
review the official documentation to identify the possible languages within the
file. Then, we develop a Python script to check for the presence of embedded
language keywords in the host language syntax, e.g., <?php> as an embedded
language inside a Java program. We match the presence of languages that are not
listed in their documentation and flag their existence. After that, we manually
check the matched single-file patches to identify the single-file multi-language
security patches and analyze their interactions.

6 S. Sun et al.

4 DATA CHARACTERIZATION

Based on the method in § 3, we collect a multi-language security patch dataset
consisting of publicly indexed vulnerability fixes. We conduct a set of experi-
mental studies to investigate the quantitative characteristics of the dataset.

4.1 Dataset Composition

We collect 14,453 security patches containing at least one of the selected lan-
guages (from the 1990s to September 24, 2024). Among them, 4,567 security
patches modify more than one file type, and 1,253 of those modify at least two
of the selected languages (which we consider as multi-file multi-language secu-
rity patches), accounting for 27.44%. 9,886 security patches only modify one
file type, and 1,545 of them embed other languages (which we call single-file
multi-language security patches), making up 15.63%. In total, we collect 2,798
multi-language patches.

4.2 Language Combinations

Among 1,253 multi-file multi-language security patches, there are 111 combina-
tions. Of these, 62 combinations include two languages, 34 combinations include
three languages, 11 combinations include four languages, three combinations in-
clude five languages, and one combination includes six languages (i.e., the patch
for CVE-2016-10096 modifies Shell, C, HTML, PHP, SQL, and JavaScript files
in the same commit). We use a Python script to count the existence of differ-
ent languages. Table 2 shows the top-20 combinations. The table reveals that
JavaScript, HTML, and Python stand out as the most popular languages for
interacting with other languages. This popularity can be attributed to three
key reasons. First, Python’s versatility allows it to be applied across various
domains and seamlessly integrated with other languages. Second, JavaScript’s
ability to function in both front-end and back-end development increases its like-
lihood of collaborating with other programming languages. Finally, HTML, as
the backbone of most front-end websites, is inherently supported by back-end
technologies, creating more opportunities for its use alongside other languages.

Table 2. The Language Combination of Multi-file Multi-language Security Patch.

Language Combination Count Language Combination Count

JavaScript & PHP 178 C++ & PHP 34
C++ & Python 163 Java & JavaScript 27

JavaScript & TypeScript 89 C++ & JavaScript 27
HTML & JavaScript 64 HTML & Java 25

C & Python 55 JavaScript & Ruby 23
HTML & Python 54 C & Perl 20

C & Shell 43 HTML & PHP 18
C & C++ 41 HTML & JavaScript & Python 17

JavaScript & Python 36 SQL & JavaScript & PHP 15
HTML & Ruby 35 SQL & PHP 15

An Empirical Study of Multi-Language Security Patches 7

Table 3. The Language Combination of Single-file Multi-language Security Patch.

Host Language Embedded Language Host Language Embedded Language

JavaScript SQL, HTML, Shell C# SQL, HTML, JavaScript
Kotlin Java C++ Shell, SQL, PHP
Perl Shell, SQL, HTML Go SQL, HTML, Shell, C

Python HTML, Shell, SQL HTML SQL, Java, JavaScript, PHP
Ruby SQL, Shell, C Java SQL, PHP, HTML, Shell
Rust C, Shell

Among 1,545 single-file multi-language security patches, there are 50 com-
binations. We list languages that embed with one of the selected 16 program-
ming languages in Table 3. The results show that Shell, HTML, and SQL are
the most popular languages for direct use in other languages. They often serve
as embedded languages because they excel in tasks that complement general-
purpose languages like Python, Java, or C++. Shell scripting automates system
tasks and manages files, HTML structures web pages, and SQL handles database
queries. When embedded in frameworks like Django (Python) or Rails (Ruby),
HTML defines web page templates, enabling dynamic content generation. Simi-
larly, embedding SQL allows direct database interaction for efficient data man-
agement. This combination leverages the strengths of both host and embedded
languages—host languages handle application logic, while embedded languages
optimize specific tasks like database operations or system management.

4.3 Security Patch Complexity

Security patch complexity reveals the difficulty in creating, applying, and verify-
ing a security patch. We assess the complexity of security patches from three
perspectives: the modification complexity, the branch structural complexity,
and the dependency complexity. We directly count the lines of code that have
changed, identifying additions and deletions marked with ‘+’ and ‘-’ for modifica-
tion complexity. Branch structural complexity is evaluated by counting updated
conditions, loops, or branches introduced by the patch. Dependency complex-
ity changes are measured by noting any added or removed libraries or frame-
works. We develop a Python script to count the added and deleted lines, iden-
tify branch statements by matching keywords and grammar, e.g., for a in A: in
Python, and identify library usage with keywords and grammar matching, e.g.,
#include<A> in C.

As shown in Figure 1, we uncover that multi-language security patches (in
red) are more complex compared to single-language ones (in blue). The com-
plexity of the multi-language security patches mainly comes from three aspects.
First, the scope and nature of the vulnerability in multi-language security patches
are more complex, affecting multiple components or systems and necessitat-
ing solutions that span several languages. Second, the software architecture of
multi-language software is more sophisticated. In a multi-language environment,
patches might need to address cross-language interactions, which can introduce
additional modifications and branch structure complexity. For example, if a web

8 S. Sun et al.

application uses JavaScript for the front-end and Python for the back-end, a
security vulnerability that affects both might require coordinated patches across
these technologies, considering how data is handled and passed between them.
Third, languages like Python can interact with multiple languages and often
have more libraries/APIs to facilitate this interaction. The availability and reli-
ability of these libraries can affect the dependency complexity of implementing
security measures.

(a) Multi-file Security Patch (b) Single-file Security Patch

AL ALDL DLABS ABSDBS DBSDDAD AD DD

Fig. 1. Patch Complexity. AL (added lines) and DL (deleted lines) represent the modi-
fication complexity. ABS (added branch structure) and DBS (deleted branch structure)
represent branch structural complexity. AD (added dependency) and DD (deleted de-
pendency) represent dependency complexity.

4.4 Vulnerability Categories Proneness

To measure the vulnerability categories’ proneness of multi-language security
patches, we use CWE (Common Weakness Enumeration) [4] identifiers. We first
collect the CWE identifiers associated with each patch. Next, we count and
visualize the number of patches that fall into each CWE category. We get 7,605
security patches associated with 329 CWE-IDs, including 1,776 multi-language
patches with 185 CWE-IDs and 5,829 single-language patches with 311 CWE-
IDs. Multi-language and single-language security patches share 167 CWE-IDs.
We plot the top-10 CWE distribution for multi-file and single-file patches in
Figure 2.

Multi-file
Single-language

Multi-file
Multi-language

Single-file
Multi-language

Single-file
Single-language

Fig. 2. CWE Distribution of Security Patches

Multi-file Single-language. The common vulnerabilities are XSS, information
leakage, DoS, path traversal, heap-based buffer overflow, SSRF, and use-after-
free. The distribution indicates a focus on memory management and DoS issues.
Multi-file Multi-language. The common vulnerabilities are XSS, improper
input validation, path traversal, CSRF, SQL injection, SSRF, and CSRF. The

An Empirical Study of Multi-Language Security Patches 9

distribution shows a mix of both client-side and server-side vulnerabilities, in-
dicating a broad surface area due to the complex interactions between multiple
file types and programming languages.
Single-file Single-language. The common vulnerabilities are XSS, out-of-
bounds read, path traversal, NULL pointer dereference, use after free, and im-
proper access control. The distribution emphasis on direct memory manipulation
and access vulnerabilities, common in environments where a single language is
used without the added complexity of multiple languages.
Single-file Multi-language. The common vulnerabilities are XSS, SQL injec-
tion, path traversal, OS command injection, improper neutralization, SSRF, and
missing authorization. This category heavily features vulnerabilities that involve
embedded languages in a single programming language.

The figure reveals that both multi-language and single-language environ-
ments exhibit a higher prevalence of XSS and CSRF vulnerabilities, indicating
challenges in user data handling and session management. Compared with single-
language environments that tend to show more severe memory and resource han-
dling issues like buffer overflows and use-after-free, multi-language environments
are more prone to injection-related vulnerabilities, including command injection
and SQL injection. Therefore, we conclude that the different combinations of
programming languages lead to more concentrated types of vulnerabilities. This
language combination tendency is also influenced by the type of application and
the architecture used in multi-language combinations. For example, client-server
architectures are common in the open-source ecosystem, and web technology
stacks often include a database in the backend, shaping the types of SQL injec-
tion vulnerabilities.

4.5 Vulnerability Severity

We choose the score calculated by Common Vulnerability Scoring System 3.1 [3]
to measure the severity of the vulnerability. Among the patched vulnerabilities,
there are 2,200 multi-file and 3,508 single-file security patches associated with the
CVSS V3.1 score, including 673 and 668 multi-language patches, respectively. We
plot the histogram of the scores and compare them with single-language patched
vulnerabilities. As shown in Figure 3, we can tell that the average score does not
vary a lot between single-language and multiple-language patched vulnerabilities.

5 Data Analysis

We manually analyze the patches to answer two questions: (1) Why are various
languages committed together? and (2) How do these languages work together
to fix the vulnerability? We then showcase the fixing patterns for each language
combination of multiple-file security patches and single-file security patches.

10 S. Sun et al.

(a) Multi-file Security Patch (b) Single-file Security Patch

Fig. 3. CVSS Distribution of Security Patches

5.1 Patterns in Multiple Files

Among all multi-file multi-language security patches, we identify eight patterns.
Six of these involve interoperability, which includes: (1) string sanitization to
ensure input strings are properly sanitized from the user and server sides; (2)
attribute validation to check and validate attributes to ensure they meet secu-
rity requirements; (3) attribute or token addition, e.g., the backend adds a token
to support frontend validation and prevent CSRF attacks; (4) HTTP method
update; (5) function and usage update; and (6) testing. Additionally, we ob-
serve two other patterns: (7) consistent changes across languages and (8) code
and documentation sync that fixes the issue in one language while updating
documentation in another language. The patterns cover 93% of examples, and
we showcase each pattern along with the common language combinations and
associated vulnerability types.
Programming Language Interoperability Patterns. Among all the multi-
file multi-language security patches, the modified programming languages inter-
act with each other with cross-language data/call flow.
String/Input Sanitization. Input sanitation is essential to prevent security vul-
nerabilities arising from untrusted user data. If input is not properly sanitized,
attackers can exploit it through techniques such as SQL injection, XSS, and
path traversal. In multi-language software systems, data shared across different
languages is referred to as global data (e.g., global variables), which is crucial for
enabling interaction between different languages or system components. In web
applications, global data can act as a bridge between server-generated content
(e.g., PHP) and client-side scripts (e.g., JavaScript). In lower-level program-
ming, global data is often used to share data between different languages or
components. For instance, global data in C might be accessed directly in an
assembly function. For multi-language systems where programs in different lan-
guages (e.g., Python, Java, C++) communicate, environment variables can serve
as global data accessible across languages. In more complex, distributed systems,
databases or key-value stores (e.g., Redis, Memcached) are often used to main-
tain a global state accessible to multiple applications or services, possibly written
in different languages. As shown in Listing 1.3, shortdesc is global data acces-
sible across different files in this system (PHP and JavaScript), likely as part of
the page context or a globally defined JavaScript object. Both the PHP code and

An Empirical Study of Multi-Language Security Patches 11

JavaScript directly access shortdesc, so this patch secures shortdesc usage both
in the server-rendered content and in any client-side updates. In summary, this
patch adds sanitization to the shortdesc by ensuring it is consistently escaped in
both the back-end and front-end, protecting against unintended script injection.

1 diff --git a/includes/Hooks/ActionsHooks.php b/includes/Hooks/ActionsHooks.php
2 --- a/includes/Hooks/ActionsHooks.php
3 +++ b/includes/Hooks/ActionsHooks.php
4 @@ -32,7 +32,7 @@ public function onInfoAction($context, &$pageInfo) {
5 $context->msg(‘shortdescription-info-label’),
6 - $shortdesc
7 + htmlspecialchars($shortdesc)
8 diff --git a/modules/ext.shortDescription.js b/modules/ext.shortDescription.js
9 --- a/modules/ext.shortDescription.js

10 +++ b/modules/ext.shortDescription.js
11 @@ -7,7 +7,7 @@ function main() {
12 tagline.classList.add(‘ext-shortdesc’, ‘shortdescription’);
13 - tagline.innerHTML = shortdesc;
14 + tagline.innerHTML = mw.html.escape(shortdesc);

Listing 1.3. Input Sanitization (CVE-2022-21710).

Attribute Validation. Adding a sanity check to validate security attributes, such
as size and value, is a common way to fix vulnerabilities. This pattern applies
across all languages and frameworks. A sanity check ensures that an attribute
(or input) follows expected rules before being processed, preventing vulnerabil-
ities such as XSS, SQL injection, and out-of-bounds access. As shown in List-
ing 1.4, the patch for CVE-2024-47227 is applied to enforce strict validation
of the order_name parameter. The update ensures that only predefined values
(“name” and “quota”) are allowed, preventing unexpected or malicious inputs. A
similar validation check is added to the template logic to prevent incorrect values
from affecting UI behavior. By doing so, the patch improves code consistency,
prevents invalid input from being processed, and reduces risks.

1 diff --git a/controllers/sql/user.py b/controllers/sql/user.py
2 --- a/controllers/sql/user.py
3 +++ b/controllers/sql/user.py
4 @@ -23,7 +23,13 @@ def GET(self, domain, cur_page=1, disabled_only=False):
5 + # Currently only sorting by ‘name’ and ‘quota’ are supported.
6 + if order_name not in ["name", "quota"]:
7 + order_name = "name"
8 diff --git a/templates/default/sql/list.html b/templates/default/sql/list.html
9 --- a/templates/default/sql/list.html

10 +++ b/templates/default/sql/list.html
11 @@ -230,10 +230,19 @@ <h2>
12 {% else %}
13 + {% set url_suffix = "" %}
14 + {% if order_name in ["name", "quota"] %}
15 + {% set url_suffix = "?order_name=" + order_name %}
16 + {% if order_by_desc %}
17 + {% set url_suffix = url_suffix + "&order_by=desc" %}
18 + {% endif %}
19 + {% endif %}

Listing 1.4. Attribute Validation (CVE-2024-47227).

Attribute or Token Addition/Update. This is where attributes or tokens have been
added or updated, commonly used for web applications to enhance protection

12 S. Sun et al.

against common attacks, particularly cross-site request forgery (CSRF). This
pattern involves injecting security tokens or attributes into backend logic and
frontend templates to ensure that user actions are properly authenticated. It is
frequently seen in applications built with PHP, Python, Java, JavaScript, and
HTML. Listing 1.5 shows the fix of CVE-2016-9456 by generating a CSRF token
in the backend logic and then adding it as a hidden input field in the frontend.

1 diff --git a/lib/max/Admin/TrackerAppend.php b/lib/max/Admin/TrackerAppend.php
2 --- a/lib/max/Admin/TrackerAppend.php
3 +++ b/lib/max/Admin/TrackerAppend.php
4 @@ -46,6 +46,7 @@ function __construct()
5 + $this->csrf_token = phpAds_SessionGetToken();
6 $this->advertiser_id = MAX_getValue(‘clientid’, 0);
7 diff --git a/lib/max/themes/TrackerAppend.html b/lib/max/themes/TrackerAppend.html
8 --- a/lib/max/themes/TrackerAppend.html
9 +++ b/lib/max/themes/TrackerAppend.html

10 @@ -26,6 +26,7 @@
11 + <input type="hidden" name="token" value="{csrf_token}" />
12 <input type="hidden" name="clientid" value="{advertiser_id}" />

Listing 1.5. Attribute Addition (CVE-2016-9456).

HTTP Method Update. This pattern replaces GET requests with POST requests
when handling sensitive data, user authentication, or modifying application
state. It is widely used in web applications built with frameworks like Python
(Django/Flask), JavaScript (AJAX), PHP, and others. As demonstrated in List-
ing 1.6, the patch addresses CVE-2016-10766 by switching from GET to POST
when retrieving user information, preventing sensitive user identifiers from being
exposed in the URL and instead placing them securely in the request body. The
test case has been updated to confirm that the API call uses POST rather than
GET in JavaScript, ensuring that user data is sent correctly in the request body.
This approach mitigates risks such as data exposure in URLs, CSRF, and cache-
based data leakage. Furthermore, it is a crucial security measure across various
frameworks, including Django, JavaScript, PHP, and Java-based environments,
helping to safeguard user data throughout different application layers.

1 diff --git a/lms/djangoapps/instructor/api.py b/lms/djangoapps/instructor/api.py
2 --- a/lms/djangoapps/instructor/api.py
3 +++ b/lms/djangoapps/instructor/api.py
4 @@ -874,10 +841,10 @@ def modify_access(request, course_id):
5 - user = get_student_from_identifier(request.GET.get(‘unique_student_identifier’))
6 + user = get_student_from_identifier(request.POST.get(‘unique_student_identifier’))
7 except User.DoesNotExist:
8 response_payload = {
9 - ‘unique_student_identifier’: request.GET.get(‘unique_student_identifier’),

10 + ‘unique_student_identifier’: request.POST.get(‘unique_student_identifier’),
11 ‘userDoesNotExist’: True,
12 diff --git a/spec/staff_debug_actions_spec.js b/spec/staff_debug_actions_spec.js
13 --- a/spec/staff_debug_actions_spec.js
14 +++ b/spec/staff_debug_actions_spec.js
15 @@ -91,7 +91,7 @@ define([
16 StaffDebug.reset(locationName, location);
17 - expect($.ajax.calls.mostRecent().args[0].type).toEqual(‘GET’);
18 + expect($.ajax.calls.mostRecent().args[0].type).toEqual(‘POST’);

Listing 1.6. HTTP Method From GET to POST (CVE-2016-10766).

An Empirical Study of Multi-Language Security Patches 13

Function and Usage Update. Vulnerabilities can be patched by modifying func-
tion calls, updating method names, or replacing deprecated functions to enforce
access control and validation. It is commonly used in applications that allow
dynamic function execution, API calls, or remote procedure calls, which may
otherwise be exploited for unauthorized access, privilege escalation, or injection
attacks. This pattern appears across different software architectures, e.g., web
applications (Python (Frappe/Django/Flask) + JavaScript (AJAX) + REST
APIs), and embedded systems (C/C++ + Python). FFI is the most common
interfacing mechanism for this pattern, which is a way to call functions, use
variables, or access features written in different languages. When the function
definition is updated, e.g., adding new parameters, the caller needs to update
the function call. Therefore, two files should be patched together to complete a
fix. As shown in Listing 1.7, the backend modifies the execute_cmd function to
ensure that method validation and whitelisting are correctly applied, preventing
unauthorized execution, and the frontend JavaScript code is updated to use the
new function run_doc_method, ensuring that frontend requests comply with the
updated security rules and do not trigger insecure function calls.

1 diff --git a/frappe/handler.py b/frappe/handler.py
2 --- a/frappe/handler.py
3 +++ b/frappe/handler.py
4 @@ -64,8 +69,9 @@ def execute_cmd(cmd, from_async=False):
5 - is_whitelisted(method)
6 - is_valid_http_method(method)
7 + if method != run_doc_method:
8 + is_whitelisted(method)
9 + is_valid_http_method(method)

10 @@ -75,31 +81,10 @@ def is_valid_http_method(method):
11 +@frappe.whitelist()
12 +def run_doc_method(method, docs=None, dt=None, dn=None, arg=None, args=None):
13 +# for backwards compatibility
14 +runserverobj = run_doc_method
15 diff --git a/frappe/public/js/frappe/request.js b/frappe/public/js/frappe/request.js
16 --- a/frappe/public/js/frappe/request.js
17 +++ b/frappe/public/js/frappe/request.js
18 @@ -55,7 +55,7 @@ frappe.call = function(opts) {
19 $.extend(args, {
20 - cmd: "runserverobj",
21 + cmd: "run_doc_method",

Listing 1.7. Updated Function Usage (CVE-2022-23057).

Testing. When a function is written in one language but needs to be compatible
with or used in applications written in another language, testing from the second
language ensures that the function behaves as expected when integrated. This
is often seen in APIs or libraries designed to be accessible in multiple languages
(e.g., a C++ library tested with Python to ensure compatibility in Python ap-
plications). Moreover, when a function is written in a low-level language like C
or C++ for performance reasons, it may still be easier to test it using a higher-
level language like Python, which is more flexible and readable. This approach
allows developers to test the function’s logic, edge cases, and integration without
sacrificing the performance benefits of the low-level implementation. As shown
in Listing 1.8, C++ code adds checks when processing the matrix, and Python

14 S. Sun et al.

code tests the newly added code. This is a common pattern among Python and
C/C++, C and Shell, C and Perl, and C and PHP combinations.

1 diff --git a/tensorflow/matrix_solve_op.cc b/tensorflow/matrix_solve_op.cc
2 + for (int dim = 0; dim < ndims - 2; dim++) {
3 + OP_REQUIRES_ASYNC(
4 + context, input.dim_size(dim) == rhs.dim_size(dim),
5 + errors::InvalidArgument(
6 + ""All input tensors must have the same outer dimensions.""), done);
7 + }
8 diff --git a/tensorflow/matrix_solve_op_test.py b/tensorflow/matrix_solve_op_test.py
9 + matrix = np.random.normal(size=(2, 6, 2, 2))

10 + rhs = np.random.normal(size=(2, 3, 2, 2))
11 + with self.assertRaises((ValueError, errors_impl.InvalidArgumentError)):
12 + self.evaluate(linalg_ops.matrix_solve(matrix, rhs))

Listing 1.8. Testing.

Other Patterns. We also discover two more patterns that involve more than
one type of file being updated while they do not interact with each other.
Consistent Changes Across Languages. Developers may migrate the software
from one language to another to adapt the new features, e.g., Linux from C to
Rust. In the middle of the migration, to ensure functionality and compatibility,
the code repository may contain similar code in the two programming languages.
Besides, to be compatible with different platforms or meet different expectations,
a piece of software may be developed in different languages, e.g., Mozilla Firefox,
C++/Rust for Desktop, Java/Kotlin for Android. In such scenarios, although
multiple different files have been modified, the semantics of the modified files
stay the same to guarantee all versions are patched. Listing 1.9 shows C and
C++ perform the same change to avoid buffer overflow.

1 diff --git a/dcraw/dcraw.c b/dcraw/dcraw.c
2 - if(tiff_bps <= 8)
3 - gamma_curve(1.0/imgdata.params.coolscan_nef_gamma,0.,1,255);
4 + if(!image)
5 + throw LIBRAW_EXCEPTION_IO_CORRUPT;
6 + int bypp = tiff_bps <= 8 ? 1 : 2;
7 diff --git a/internal/dcraw_common.cpp b/internal/dcraw_common.cpp
8 - if(tiff_bps <= 8)
9 - gamma_curve(1.0/imgdata.params.coolscan_nef_gamma,0.,1,255);

10 + if(!image)
11 + throw LIBRAW_EXCEPTION_IO_CORRUPT;
12 + int bypp = tiff_bps <= 8 ? 1 : 2;

Listing 1.9. Same Change (CVE-2018-5812).

Code and Documentation. Another common pattern in non-interactive multi-
language security patches is that one language is responsible for fixing the vul-
nerability, while the other updates the version information or related documenta-
tion. As shown in Listing 1.10, the vulnerability is addressed through Java code
changes, whereas the HTML update is limited to modifying the bug description.
In this pattern, the language responsible for fixing the vulnerability can vary,
but HTML is commonly used for documentation updates.

An Empirical Study of Multi-Language Security Patches 15

1 diff --git a/changelog.html b/changelog.html
2 --- a/changelog.html
3 +++ b/changelog.html
4 @@ -61,6 +61,10 @@
5 + <li class=bug>
6 + may refuse set secure.
7 + Deal with it gracefully.
8 + (issue 25019)
9 diff --git a/core/src/main/java/WebAppMain.java b/core/src/main/java/WebAppMain.java

10 --- a/core/src/main/java/WebAppMain.java
11 +++ b/core/src/main/java/WebAppMain.java
12 @@ -56,6 +56,7 @@
13 + markCookieAsHttpOnly(context);
14 + private void markCookieAsHttpOnly(ServletContext context) {
15 + try {
16 + LOGGER.log(Level.WARNING, "Failed to set HTTP-only cookie flag", e);
17 + }
18 + }

Listing 1.10. Documentaion Update (CVE-2014-9635).

5.2 Patterns in Single File

Among security patches, when multiple languages interact within a single file,
embedding is a popular way to handle specific tasks. As shown in Table 3, SQL,
Shell, and HTML are the three most popular programming languages that are
embedded.
SQL Query. Many programs, e.g., mobile apps and web apps, interact with
databases, so embedding SQL allows developers to combine SQL’s data-handling
strengths with the computational capabilities of general-purpose languages like
Python, Java, or C. The interaction workflow spans four phases: (1) Connection:
Establish a connection to the database using credentials and connection strings;
(2) Query Execution: SQL commands are sent as strings or method calls from
the language to the database; (3) Result Handling: The database processes the
query and sends results back, which are parsed and used in the program; (4) Error
Handling: SQL errors (e.g., syntax issues, connection failures) are handled by the
host language’s mechanisms. The fix patterns are associated with each workflow
phase. Listing 1.11 shows a patch that modifies the machine.py file to improve
how SQL queries are handled. Specifically, it replaces string interpolation with
parameterized queries to enhance security and maintainability. The updated
code uses a parameterized query and passes the cc_number as a parameter. This
ensures that the database driver handles escaping, preventing SQL injection.
Subprocess Execution. Embedding shell scripts allows developers to combine
the logic and features of high-level programming languages with the system-
level capabilities of shell commands. Most programming languages provide a
way to execute shell commands or scripts using system calls. These system calls
create a child process to run the shell script and capture its output. As shown in
Listing 1.12, this patch modifies the apkleaks.py script to improve the handling
of command-line arguments when decompiling APK files. It addresses potential
issues like command injection and ensures proper escaping of arguments passed
to the os.system call. Besides, subprocess libraries offer more control over shell
execution, such as capturing output, handling errors, and managing inputs. As
shown in Listing 1.13, this patch modifies the gluon/messageboxhandler.py file to
replace the use of os.system with subprocess.run for sending system notifications

16 S. Sun et al.

1 diff --git a/machine.py b/machine.py
2 --- a/machine.py
3 +++ b/machine.py
4 @@ -151,8 +151,7 @@ def is_card_pin_at_session(request):
5 def get_card(request, cc_number):
6 - q = "select * from cards where cc_number = ‘%s’" % cc_number.replace(‘-’, ‘’)
7 - row = request.db.execute(q).fetchone()
8 + row = request.db.execute("select * from cards where cc_number = ?", (cc_number.

replace(‘-’, ‘’),)).fetchone()
9 @@ -172,7 +171,7 @@ def update_failed_attempts(request, failed_attempts):

10 def block_card(request):
11 card = request.session[‘card’]
12 - request.db.execute("update cards set status=‘blocked’ where id=%s" % card[‘id’])
13 + request.db.execute("update cards set status=‘blocked’ where id=?", (card[‘id’],))
14 request.db.commit()

Listing 1.11. SQL Query (CVE-2015-10069).

using the notify-send command. From these two examples, we can tell that the
shell script can be constructed as a string, or the tokens that form the shell
statement will be used as parameters for library methods.

1 diff --git a/apkleaks/apkleaks.py b/apkleaks/apkleaks.py
2 --- a/apkleaks/apkleaks.py
3 +++ b/apkleaks/apkleaks.py
4 @@ -2,6 +2,7 @@
5 + from pipes import quote
6 @@ -84,8 +85,9 @@ def decompile(self):
7 - dec = "%s %s -d %s --deobf" % (self.jadx, dex, self.tempdir)
8 - os.system(dec)
9 + args = [self.jadx, dex, "-d", self.tempdir, "--deobf"]

10 + comm = "%s" % (" ".join(quote(arg) for arg in args))
11 + os.system(comm)

Listing 1.12. Subprocess (CVE-2021-21386).

1 diff --git a/gluon/messageboxhandler.py b/gluon/messageboxhandler.py
2 --- a/gluon/messageboxhandler.py
3 +++ b/gluon/messageboxhandler.py
4 @@ -1,6 +1,6 @@
5 -import os
6 +import subprocess
7 @@ -36,4 +36,4 @@ def __init__(self):
8 def emit(self, record):
9 if tkinter:

10 msg = self.format(record)
11 - os.system("notify-send ‘%s’" % msg)
12 + subprocess.run(["notify-send", msg], check=False, timeout=2)

Listing 1.13. Subprocess (CVE-2023-45158).

Embedded in HTML. Embedding HTML introduces security risks such as
XSS, HTML injection, Clickjacking, and CSRF. These vulnerabilities arise when
user input is not properly escaped, sanitized, or validated, allowing attackers to
inject malicious scripts, manipulate HTML structures, or execute unauthorized
actions. To mitigate these risks, developers often use escaping functions, enforce
Content Security Policies (CSP) to restrict inline scripts, sanitize user input using
libraries like DOMPurify (JavaScript) or Bleach (Python), and implement CSRF
tokens in forms. Additionally, avoiding direct execution of embedded HTML and
using templating engines ensures structured and secure rendering, reducing the
likelihood of security breaches while maintaining flexibility in content presenta-

An Empirical Study of Multi-Language Security Patches 17

tion. As shown in Listing 1.14, the patch shows HTML embedded in PHP us-
ing Laravel Blade templates. The code includes HTML elements (a <form> tag)
while also using Laravel’s Blade directives like @csrf and route(‘admin.logout’)
, which generate PHP code dynamically. This update ensures that logout re-
quests are sent as POST requests with a CSRF token, preventing CSRF attacks
where attackers might trick users into logging out unknowingly.

1 diff --git a/views/layouts/main.blade.php b/views/layouts/main.blade.php
2 --- a/views/layouts/main.blade.php
3 +++ b/views/layouts/main.blade.php
4 @@ -71,6 +71,11 @@
5 @include(‘twill::partials.footer’) </section> </div>
6 + <form class="visually-hidden" method="POST" action="{{ route(‘admin.logout’) }}"

data-logout-form> @csrf </form>

Listing 1.14. Embedded HTML (CVE-2021-3932).

6 Discussion

We outline various usage scenarios for our work. Additionally, we discuss its
limitations and propose directions for future work.

6.1 Usage Scenarios

We release the dataset, including patch patterns, and will expand it with multi-
language non-security patches. This dataset will serve as a benchmark, training
data for multi-language program analysis tools, and automatic program repairs.
Benchmark. To the best of our knowledge, the dataset we released is the
largest multi-language security patch dataset, encompassing the most languages.
It serves as a robust benchmark for evaluating the learning or transfer capabilities
of target techniques, as it includes interactions across 16 programming languages
and 185 vulnerability types.
Multi-language Program Analysis Tool. Previous program analysis tools,
often focused on single languages, may miss vulnerabilities in embedded or in-
teracting languages. Our dataset addresses this gap by offering language combi-
nations and test cases to evaluate such tools. By analyzing existing vulnerability
statistics, researchers can prioritize studying language pairs more prone to vul-
nerabilities, e.g., JavaScript and PHP, to enhance tool effectiveness.
Auto Program Repair. The primary goal of releasing the multi-language secu-
rity patch dataset is to advance automatic program repair. The dataset includes
both vulnerable (pre-patch) and fixed (post-patch) code, enabling the detection
of vulnerabilities and guiding their remediation. The pre-patch versions can be
used to design static or dynamic analysis tools or train deep learning models to
identify vulnerability patterns across languages. Meanwhile, the post-patch ver-
sions provide remediation examples, which can train language models to trans-
form vulnerable code into secure code. Notably, our dataset covers single-file
multi-language security patches, meaning it can address cases where embedded
languages appear as strings within a host language.

18 S. Sun et al.

6.2 Limitation and Future Work

Our dataset is sourced from MITRE, but the analysis and indexing of CVEs by
CVE Numbering Authorities (CNAs) [1] may introduce biases, as the 421 diverse
CNAs do not catalog every reported vulnerability. As a result, our dataset does
not include all multi-language security patches found in open-source repositories.
Additionally, not all vulnerability records include fixes, nor are all fixes publicly
released, so our dataset lacks patches for these cases. Furthermore, some vulner-
ability reports omit CWE and CVSS scores, potentially limiting the statistical
analysis of vulnerability types.

Due to differing advisory policies, some vendors release security patches with-
out public disclosure. Research [31] shows that 6-10% of GitHub commits are
security patches, prompting our future focus on identifying and analyzing silent
multi-language patches. Furthermore, as our MITRE-based dataset lacks certain
interaction types, we plan to generate synthetic examples to incorporate unseen
language combinations and interaction patterns.

7 Related Work
Patch Dataset. Security commits offer valuable insights into existing vulnera-
bilities and their corresponding fixes, making them essential for creating datasets
used in security commit detection and automated program repair. However,
all [29,14,31,28,9,13,34] of the existing datasets are limited to patches written
in one programming language. Besides, most of the existing datasets are limited
to specific projects [29,35] or contain only a small number of security commits
linked to CVEs [14,9]. While some researchers include commits indexed by NVD
as well as silent fixes [31,28,13,30], their focus has been primarily on C/C++,
Java, and Python, overlooking widespread multi-language repositories. Although
Li et al. [17] have released a commit dataset of multilingual projects, the samples
in this dataset are not in multi-languages nor indexed by the MITRE, and the
interfacing mechanisms included are limited. Additionally, the quality of the data
cannot be assured, as only less than 5% of the samples were manually verified.
Furthermore, their method of using keyword matching to identify vulnerable
commits does not guarantee the accuracy of the identified vulnerabilities.
Multi-language Software and Patch Analysis. Building software using mul-
tiple programming languages has been a normal practice for a long time. Re-
searchers have measured the language selection [25,20,19], challenges [26], and
bad practices [7]. However, it remains uncertain if multilingual code construc-
tion has significant security implications or leads to real security consequences.
Li et al. [17,18] found statistically significant associations between the proneness
of multilingual code to vulnerabilities, which is correlated with the language
interfacing mechanism, not that of individual languages. They also introduce
the first taxonomy of language interfacing. However, their analysis is limited
to the project level. In multi-language software, not all commits involve multi-
ple languages. As a result, their conclusions apply to multi-language software
as a whole, not to multi-language patches. The former cannot fully represent
the latter. Even within the same repository, interaction mechanisms can vary.

An Empirical Study of Multi-Language Security Patches 19

For the same language combination, both vulnerability patterns and interface
mechanisms may differ. Moreover, they define only four types of interfacing and
overlook interaction details that occur within single-file multi-language cases.

Motivated by the security impact of the multi-language trend, researchers
propose approaches to analyze the multi-language patches. However, these ap-
proaches either focus on limited language combinations or specific application
types. Buro et al. [10] show formal properties of interest of multi-language ab-
stractions. Li et al. [33] and Yang et al. [21] propose to locate and detect multilin-
gual bugs in Python and C/C++ repositories, i.e., TensorFlow and NumPy. Lei
et al. [16] propose intermediate representations to detect vulnerabilities across
C/++ and Java. Figueiredo et al. [15] detects multi-language vulnerabilities for
web applications. Negrini [27] introduces a generic framework for multi-language
analysis for Go, Java, and C++ in smart contract development. Yang et al. [32]
characterize Python-C and Java-C patches into 5 aspects, including their symp-
toms, locations, manifestations, root causes, and fixes.

The scarcity of data on language combinations, insufficient explanations of
language interoperability, and the lack of summarized fixing patterns have mo-
tivated us to create a comprehensive dataset of multi-language security patches
from diverse projects. Furthermore, we seek to extract fixing patterns to encour-
age advancements in automated program repair.

8 Conclusion

In this paper, we investigate why commits in multi-language repositories involve
updates across multiple languages and how these languages collaborate to ad-
dress vulnerabilities. We analyze 2,798 multi-language security patches indexed
by MITRE, comprising 1,253 multi-file and 1,545 single-file patches. Our findings
reveal that multi-language patches are more complex than single-language ones,
with greater modifications, intricate branch structures, and higher dependency
complexity. We also find that multi-language security patches are more likely
to involve injection-related and web-related vulnerabilities, mainly due to the
general system design and choice of languages used in multi-language software
systems. We summarize 11 fixing patterns and observe their correlation with
interfacing mechanisms. To promote further research, we release our dataset, in-
cluding fixing patterns, to support the development of automated multi-language
program repairs.

Acknowledgments

We appreciate the helpful comments from our shepherd and the reviewers. This
work was partially supported by the US Office of Naval Research grant N00014-
23-1-2122.

20 S. Sun et al.

References

1. CNAs (2024), https://www.cve.org/ProgramOrganization/CNAs
2. CVE. (2024), https://cve.mitre.org/index.html
3. CVSS_v3 (2024), https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
4. CWE (2024), https://cwe.mitre.org/
5. Github commits language count (2025), âĂŒhttps://api.github.com/search/

commits?q=language:{languagecombination}
6. Github repositories language count (2025), âĂŒhttps://api.github.com/search/

repositories?q=language:{languagecombination}
7. Abidi, M., Grichi, M., Khomh, F., Guéhéneuc, Y.G.: Code smells for multi-

language systems. In: Proceedings of the 24th European conference on pattern
languages of programs. pp. 1–13 (2019)

8. Bandara, V., Rathnayake, T., Weerasekara, N., Elvitigala, C., Thilakarathna, K.,
Wijesekera, P., Keppitiyagama, C.: Fix that fix commit: A real-world remediation
analysis of javascript projects. In: 2020 IEEE 20th International Working Confer-
ence on Source Code Analysis and Manipulation (SCAM). IEEE (2020)

9. Bhandari, G., Naseer, A., Moonen, L.: CVEfixes: automated collection of vulner-
abilities and their fixes from open-source software. In: Proceedings of the 17th
International Conference on Predictive Models and Data Analytics in Software
Engineering. pp. 30–39 (2021)

10. Buro, S., Crole, R., Mastroeni, I.: On multi-language abstraction: Towards a static
analysis of multi-language programs. Formal Methods in System Design (2023)

11. Cass, S.: The top programming languages 2024 (Aug 2024), https://spectrum.
ieee.org/top-programming-languages-2024

12. Chakraborty, P., Alfadel, M., Nagappan, M.: Blaze: Cross-language and cross-
project bug localization via dynamic chunking and hard example learning. arXiv
preprint arXiv:2407.17631 (2024)

13. Chen, Y., Ding, Z., Chen, X., Wagner, D.: DiverseVul: A New Vulnerable Source
Code Dataset for Deep Learning Based Vulnerability Detection. arXiv preprint
arXiv:2304.00409 (2023)

14. Fan, J., Li, Y., Wang, S., Nguyen, T.N.: AC/C++ code vulnerability dataset with
code changes and CVE summaries. In: Proceedings of the 17th International Con-
ference on Mining Software Repositories. pp. 508–512 (2020)

15. Figueiredo, A., Lide, T., Correia, M.: Multi-language web vulnerability detection.
In: 2020 IEEE International Symposium on Software Reliability Engineering Work-
shops (ISSREW). pp. 153–154. IEEE (2020)

16. Lei, T., Xue, J., Wang, Y., Liu, Z.: Irc-clvul: Cross-programming-language vulner-
ability detection with intermediate representations and combined features. Elec-
tronics 12(14), 3067 (2023)

17. Li, W., Li, L., Cai, H.: On the vulnerability proneness of multilingual code. In:
Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. pp. 847–859 (2022)

18. Li, W., Li, L., Cai, H.: Polyfax: a toolkit for characterizing multi-language software.
In: Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. pp. 1662–1666 (2022)

19. Li, W., Marino, A., Yang, H., Meng, N., Li, L., Cai, H.: How are multilingual sys-
tems constructed: Characterizing language use and selection in open-source mul-
tilingual software. ACM Transactions on Software Engineering and Methodology
33(3), 1–46 (2024)

https://www.cve.org/ProgramOrganization/CNAs
https://cve.mitre.org/index.html
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://cwe.mitre.org/
‌https://api.github.com/search/commits?q=language:{language combination}
‌https://api.github.com/search/commits?q=language:{language combination}
‌https://api.github.com/search/repositories?q=language:{language combination}
‌https://api.github.com/search/repositories?q=language:{language combination}
https://spectrum.ieee.org/top-programming-languages-2024
https://spectrum.ieee.org/top-programming-languages-2024

An Empirical Study of Multi-Language Security Patches 21

20. Li, W., Meng, N., Li, L., Cai, H.: Understanding language selection in multi-
language software projects on github. In: 2021 IEEE/ACM 43rd International Con-
ference on Software Engineering: Companion Proceedings (ICSE-Companion). pp.
256–257. IEEE (2021)

21. Li, W., Ming, J., Luo, X., Cai, H.: {PolyCruise}: A {Cross-Language} dynamic in-
formation flow analysis. In: 31st USENIX Security Symposium (USENIX Security
22). pp. 2513–2530 (2022)

22. Li, Z., Ji, J., Liang, P., Mo, R., Liu, H.: An exploratory study on just-in-time multi-
programming-language bug prediction. Information and Software Technology 175,
107524 (2024)

23. Li, Z., Wang, W., Wang, S., Liang, P., Mo, R.: Understanding resolution of multi-
language bugs: An empirical study on apache projects. In: 2023 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM). pp. 1–11. IEEE (2023)

24. Malone, T.: Interoperability in programming languages. Scholarly Horizons: Uni-
versity of Minnesota, Morris Undergraduate Journal 1(2), 3 (2014)

25. Mayer, P., Bauer, A.: An empirical analysis of the utilization of multiple program-
ming languages in open source projects. In: Proceedings of the 19th International
Conference on Evaluation and Assessment in Software Engineering. pp. 1–10 (2015)

26. Mushtaq, Z., Rasool, G.: Multilingual source code analysis: State of the art and
challenges. In: 2015 International Conference on Open Source Systems & Tech-
nologies (ICOSST). pp. 170–175. IEEE (2015)

27. Negrini, L.: A generic framework for multilanguage analysis (2023)
28. Nikitopoulos, G., Dritsa, K., Louridas, P., Mitropoulos, D.: CrossVul: a cross-

language vulnerability dataset with commit data. In: Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. pp. 1565–1569 (2021)

29. Ponta, S.E., Plate, H., Sabetta, A., Bezzi, M., Dangremont, C.: A manually-curated
dataset of fixes to vulnerabilities of open-source software. In: 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR). IEEE (2019)

30. Sun, S., Wang, S., Wang, X., Xing, Y., Zhang, E., Sun, K.: Exploring security com-
mits in python. In: 2023 IEEE International Conference on Software Maintenance
and Evolution (ICSME). pp. 171–181. IEEE (2023)

31. Wang, X., Wang, S., Feng, P., Sun, K., Jajodia, S.: Patchdb: A large-scale secu-
rity patch dataset. In: 2021 51st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). pp. 149–160. IEEE (2021)

32. YANG, H., CAI, H.: Dissecting real-world cross-language bugs (2025)
33. Yang, H., Nong, Y., Zhang, T., Luo, X., Cai, H.: Learning to detect and localize

multilingual bugs. Proceedings of the ACM on Software Engineering (FSE) (2024)
34. Zheng, Y., Pujar, S., Lewis, B., Buratti, L., Epstein, E., Yang, B., Laredo, J.,

Morari, A., Su, Z.: D2a: A dataset built for ai-based vulnerability detection meth-
ods using differential analysis. In: 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP) (2021)

35. Zhou, Y., Siow, J.K., Wang, C., Liu, S., Liu, Y.: SPI: Automated identification
of security patches via commits. ACM Transactions on Software Engineering and
Methodology (TOSEM) 31(1), 1–27 (2021)

	An Empirical Study of Multi-Language Security Patches in Open Source Software

