
BinProv: Binary Code Provenance Identification without
Disassembly

Xu He
George Mason University
Fairfax, Virginia, USA

xhe6@gmu.edu

Shu Wang
George Mason University
Fairfax, Virginia, USA
swang47@gmu.edu

Yunlong Xing
George Mason University
Fairfax, Virginia, USA
yxing4@gmu.edu

Pengbin Feng
George Mason University
Fairfax, Virginia, USA
pfeng4@gmu.edu

Haining Wang
Virginia Tech

Arlington, Virginia, USA
hnw@vt.edu

Qi Li
Tsinghua University

Beijing, China
qli01@tsinghua.edu.cn

Songqing Chen
George Mason University
Fairfax, Virginia, USA
sqchen@gmu.edu

Kun Sun
George Mason University
Fairfax, Virginia, USA

ksun3@gmu.edu

ABSTRACT
Provenance identification, which is essential for binary analysis,
aims to uncover the specific compiler and configuration used for
generating the executable. Traditionally, the existing solutions ex-
tract syntactic, structural, and semantic features from disassembled
programs and employ machine learning techniques to identify the
compilation provenance of binaries. However, their effectiveness
heavily relies on disassembly tools (e.g., IDA Pro) and tedious fea-
ture engineering, since it is challenging to obtain accurate assembly
code, particularly, from the stripped or obfuscated binaries. In ad-
dition, the features in machine learning approaches are manually
selected based on the domain knowledge of one specific archi-
tecture, which cannot be applied to other architectures. In this
paper, we develop an end-to-end provenance identification system
BinProv, which leverages a BERT (Bidirectional Encoder Repre-
sentations from Transformers) based embedding model to learn
and represent the context semantics and syntax directly from the
binary code. Therefore, BinProv avoids the disassembling step and
manual feature selection in provenance identification. Moreover,
BinProv can distinguish the compilers and the four optimization
levels (O0/O1/O2/O3) by fine-tuning the classifier model with the
embedding inputs for specific provenance identification tasks. Ex-
perimental results show that BinProv achieves 92.14%, 99.4%, and
99.8% accuracy at byte sequence, function, and binary levels, re-
spectively. We further demonstrate that BinProv works well on
obfuscated binary code, suggesting that BinProv is a viable ap-
proach to remarkably mitigate the disassembler dependence in
future provenance identification tasks. Finally, our case studies

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
RAID 2022, October 26–28, 2022, Limassol, Cyprus
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9704-9/22/10.
https://doi.org/10.1145/3545948.3545956

show that BinProv can better identify compiler helper functions
and improve the performance of binary code similarity detection.

CCS CONCEPTS
• Security and privacy→ Software security engineering.

KEYWORDS
binary program, provenance, compiler, optimization level, BERT

ACM Reference Format:
Xu He, Shu Wang, Yunlong Xing, Pengbin Feng, Haining Wang, Qi Li,
Songqing Chen, and Kun Sun. 2022. BinProv: Binary Code Provenance
Identification without Disassembly. In 25th International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2022), October 26–28, 2022,
Limassol, Cyprus. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3545948.3545956

1 INTRODUCTION
Cross-architecture and cross-compiler binaries of the analogous
source code pose a challenge for the binary code similarity analy-
sis [7, 10, 17, 31, 36, 41]. While the CPU architecture (e.g., x86 or
ARM) determines the instruction set, compiler and optimization op-
tions change the composition of instructions. The induced instruc-
tion differences impede the effectiveness of similarity detection.
Thus, it is critical to accurately uncover these underlying influential
factors for the binary similarity analysis and other downstream
tasks, such as malware detection, plagiarism detection, authorship
identification, and vulnerability discovery [9, 14, 25, 32, 41]. The
process of identifying the compilation environments is also referred
to as provenance identification [32].

Existing provenance identification solutions are keen to extract
features from assembly instructions and then input these features
into machine learning (ML) based paradigms [14, 25, 32]. They
usually collect three types of features, namely, syntactic features,
structural features, and semantic features. The syntactic features
count the appearance of a program’s properties in assembly, such as
instruction idiom, function signature, and the frequency of specific

https://doi.org/10.1145/3545948.3545956
https://doi.org/10.1145/3545948.3545956
https://doi.org/10.1145/3545948.3545956

RAID 2022, October 26–28, 2022, Limassol, Cyprus Xu, et al.

opcodes. The structural features represent the control structure or
data flow of a program, such as the control flow graph (CFG) and
function call graph (FCG). The semantic features are extracted by
more complex analysis, e.g., the graph-based combined features
and ML-based embedding representations. With the above features,
provenance identification can be framed as an ML based classifica-
tion task.

However, these prior works have three major limitations: depen-
dency upon inconvenient and inaccurate disassemblers, manual
feature extraction, and coarse-grained identification. First, they rely
on the existing disassembly and binary analysis tools (e.g., IDA
Pro [12], Angr [38], and Ghidra [24]) to obtain assembly code and
extract features, since binaries lack high-level abstractions and can-
not provide any meaningful features, such as the function boundary.
However, those existing tools cannot guarantee to generate accu-
rate assembly or structure information, particularly, for stripped or
obfuscated binaries [1]. Second, the features used in the existing
models are often manually selected and processed based on the
domain knowledge for a specific compilation and CPU architec-
ture and hence may not work across different architectures. Thus,
the feature extraction needs to be redone manually for a different
architecture. Moreover, there is a trend to accommodate a large
amount of features to enhance the semantic information but lack
of interpretation as to which works. Consequently, it may cause
prohibitive time and computational complexities [14, 32, 33]. Third,
the existing approaches focus on distinguishing two sets of coarse-
grained optimization information, namely, the low optimization
level (including O0/O1) and the high optimization level (including
O2/O3). However, they cannot accurately distinguish O2 from O3
or O0 from O1. Note that O2 and O3 contain different sets of flags.
For instance, O3 has 15 more flags than O2 in GCC 8.2.0. Distin-
guishing O2/O3 is essential to precisely restore the compilation
configuration.

In this paper, we propose BinProv, an end-to-end deep-learning-
based framework that can identify compilation provenance by tak-
ing the binary code directly as the input into a BERT (Bidirectional
Encoder Representations from Transformers) based embedding
model [6, 19] and stacking a fully connected model to classify
provenance. It is based on our observation that different compila-
tion configurations would change the byte sequence significantly
in the binary code, so that different byte sequence patterns may
imply different compilation provenance. Since a different context of
a byte in binary code represents different instructions in assembly
code, we build a BERT-based embedding model that is capable of
learning the contextual semantics in machine code. BinProv can
totally avoid the dependence on disassemblers since it only uses
binary code as input. Also, BinProv is architecture-agnostic and
thus does not require domain knowledge of a target architecture
to manually extract the features. Moreover, using the rich seman-
tics in the embedding, BinProv can distinguish between four finer
optimization levels (O0/O1/O2/O3).

We resolve three main challenges in identifying compilation
provenance from binary code. First, without access to the assembly
code, we cannot obtain the syntactic and structural features of
assembly instructions or functions, which are critical for machine
learning models to identify provenance. Instead, BinProv depends
on retrieving the contextual semantics of the binary code, since

the changes of the compilation provenance have impacts on the
context of the binary code. It decomposes the .text section of a
binary code into a series of fixed-length byte sequences (e.g., 512
bytes) to serve as the basic unit of provenance identification.

Second, the traditional classification models can hardly capture
the key bytes and context from the sparse semantics of the byte
sequences that only consist of ‘0’ and ‘1’ bits. To solve this chal-
lenge, BinProv builds a BERT-based embedding model that is capa-
ble of learning the dense contextual semantics of the byte sequence
bidirectionally [6, 19]. Then, we stack a fully connected network
to identify the provenance. Since the classic BERT model has a
complex architecture that requires a huge amount of time and re-
source to learn a large number of parameters, we employ a transfer
learning based training strategy to reduce the training cost of the
BERT model in two steps. In the first step, we pre-train the embed-
ding model using a Masked Language Modeling (MLM) task [19],
which excels at training the model to learn the contextual semantics
among the bytes in a byte sequence. In the second step, we fine-tune
BinProv (including both the embedding model and the classification
model) with specific provenance tasks, i.e., compiler identification
and optimization level identification. Besides, BinProv can also be
fine-tuned for other tasks, such as identifying the architecture and
types of functions.

Third, the provenance of a single byte sequencemay not correctly
represent the provenance of a function or the entire binary code.
First, a single binary may be linked frommultiple object files, which
could be compiled using different optimization levels. Second, the
machine code of some functions may not change with optimization
levels, such as the compiler helper functions (e.g., frame_dummy
and _start) generated by the compiler. However, our measurement
study on Github’s real-world projects shows that 96% projects are
prone to use the same optimization level to generate individual
binary file (see Section 2.3). Based on the above measurement study,
BinProv adopts themajority votingmechanism over the provenance
results from multiple byte sequences to improve its identification
performance on the function level and binary level.

We implement a prototype of BinProv with PyTorch [26].1 To
evaluate BinProv’s performance, we conduct extensive experiments
on 7065 program binaries from the BINKIT dataset [17], which con-
sists of 51 GNU software projects compiled using GCC and Clang
over four optimization levels. We compare the accuracy of BinProv
with two state-of-the-art approaches, and the experimental results
show that BinProv can outperform all those approaches. For both
compiler and optimization level identification, BinProv achieves
92.14%, 99.4%, and 99.8% accuracy at byte sequence, function, and
binary level, respectively. Then, we analyze the influencing factors
on the system performance, including the embedding model, binary
length, sequence similarity, sequence location, and function type.
Finally, we conduct two case studies on compiler helper function
identification and binary code similarity detection.

In summary, our paper makes the following contributions.
• We develop a deep learning based framework called BinProv to
identify the compilation provenance using the contextual seman-
tics of binary code. It does not require disassembler or the manual
feature extraction.

1 https://github.com/Viewer-HX/BinProv

https://github.com/Viewer-HX/BinProv

BinProv: Binary Code Provenance Identification without Disassembly RAID 2022, October 26–28, 2022, Limassol, Cyprus

#include <stdio.h>
int sum(int a, int b) {
 return a + b;
}

int main() {
 int a, b;
 scanf(“%d%d”, &a, &b);
 int c = sum(a, b);
 printf(“c = %d\n”, c);
 return 0;
}

<sum>:
push rbp
mov rbp, rsp
mov dword ptr [rbp-4],edi
mov dword ptr [rbp-8],esi
mov eax,dword ptr [rbp-8]
mov edx,dword ptr [rbp-4]
add eax, edx
pop rbp
ret

<sum>:
lea eax,[rdi+rsi*1]
ret

40114d: 55
40114e: 48 89 e5

401151: 89 7d fc

401154: 89 75 f8

401157: 8b 45 f8

40115a: 8b 55 fc

40115d: 01 d0

40115f: 5d
401160: c3

4005d0: 8d 04 37
4005d3: c3

Source code Assembly code
GCC-4.8.4-O0

GCC-4.8.4-O2

Machine code
Clang-8.0.1-O0

<sum>:
lea eax,[rdi+rsi*1]
ret

<sum>:
push rbp
mov rbp, rsp
mov dword ptr [rbp-4],edi
mov dword ptr [rbp-8],esi
mov esi,dword ptr [rbp-8]
add esi,dword ptr [rbp-4]
mov eax, esi
pop rbp
ret

Clang-8.0.1-O2

4005d0: 55
4005d1: 48 89 e5

4005d4: 89 7d fc

4005d7: 89 75 f8

4005da: 89 75 fc

4005dd: 03 75 f8

4005e0: 89 f0

4005e2: 5d
4005e3: c3

Machine code Assembly code

401190: 8d 04 37
401193: c3

1

2

3

4

Figure 1: Four cases from source code to binary code under different compilers and optimization (opt) levels. Case 1 is compiled
with O0 under Clang 8.0.1; Case 2 is compiled with O2 under Clang 8.0.1; Case 3 is compiled with O0 under GCC 4.8.4; Case 4 is
compiled with O2 under GCC 4.8.4.

• We implement an architecture-agnostic prototype of BinProv,
which can accurately identify different compilers and specific
optimization level options.

• We evaluate BinProv on a massive binary dataset, showing that
BinProv can achieve a high accuracy of provenance identifica-
tion under various compilation configurations and improve the
performance of binary code similarity analysis.

2 PRELIMINARY ANALYSIS AND
MOTIVATION

In this section, we first analyze the correlation between compilation
provenance and binary code variance. We next investigate the
limitations of existing disassemblers. Then, we study the usage of
optimization levels in real-world projects and provide some key
observations.

2.1 Code Variance from Compilation
The binary code variance is mainly caused by compilation in two
aspects. First, compilers have their exclusive implementations that
are determined by the instruction set architecture (ISA) [21], though
they follow similar encoding rules. Second, different optimization
options can cause even more changes. The compiler provides a
number of optimization flags, which are grouped into a series of
optimization level options.

Figure 1 shows four cases compiled using GCC 4.8.4 and Clang
8.0.1 with O0 and O2 options, respectively. We use them as examples
to illustrate that the byte sequence intercepted from the machine
code can embody the changes caused by compiler and optimization
levels. Comparing cases 1 and 2 (different optimization levels of
Clang), the machine code under O2 is much shorter than that under
O0. It is the same for GCC between cases 3 and 4 . Comparing
cases 1 and 3 (different compilers under O0), they have a similar
construct in assembly code with 2 different registers and opcodes.
For both provenance changes, the byte sequences in the machine
code change drastically, as shown in the red dash squares.

Between cases 2 and 4 (different compilers under O2), they
have the same assembly code and machine code; however, their
storage address (offsets) are different. The start addresses are the
same in cases 1 and 2 of Clang, while the start addresses are

 0

 0.2

 0.4

 0.6

 0.8

 1

O0 vs O1 O1 vs O2 O2 vs O3N
or

m
al

iz
ed

 C
om

pr
es

si
on

 D
is

ta
nc

e

Optimization Level Comparison

Clang-7.0
GCC-8.2.0

(a) NCD between optimization levels.

0

1e5

2e5

3e5

4e5

5e5

O0 O1 O2 O3

.te
xt

 S
ec

ti
on

 L
en

gt
h

in
 B

in
ar

y

Optimization Level

Clang-7.0
GCC-8.2.0

(b) Length vs optimization level.

Figure 2: TheNCDdistance and .text section length of binary
variants under different compilers and optimization levels.

different in cases 3 and 4 of GCC. This is because GCC relocates
sum(a,b) behind main() when replacing O0 with O2, while Clang
does not. We see that the structural features cannot represent these
address differences. Also, the statistical features cannot identify
the operator changes in cases 1 and 3 , since the opcodes are
the same but in different orders. In contrast, the byte sequence can
reflect such location changes in the machine code.

Specifically, the optimization level is provided to restructure the
binary according to different optimization goals (e.g., compilation
time, target file size, and execution efficiency) [11]. For GCC, O0 does
not perform any optimization; O1 mainly optimizes code branches,
constants, and expressions; O2 focuses more on register-level and
instruction-level optimizations; O3 performs more optimizations
based on O2, such as loop optimizations. The latter optimization
level adds more optimization flags based on the former one, i.e., O1,
O2, and O3 add 43, 46, and 15 flags to O0, O1, and O2, separately. For
the variances between all optimization levels, we find that differ-
ences between O2/O3 are smaller than O0/O1 and O1/O2, making it
more difficult to distinguish O2 from O3.

We also compare the binary length and similarity of the byte se-
quences from 235 binaries in the BINKIT dataset [17]. The similarity
is measured by using normalized compression distance (NCD) [31].
As shown in Figure 2, the number and types of flags used in the op-
timization level affect the differences between byte sequences. The
sequence difference between O0 and O1 is the largest (NCD>0.92),
and the length of binaries under O1 is the shortest. The major reason

RAID 2022, October 26–28, 2022, Limassol, Cyprus Xu, et al.

Byte Sequences Embedding Vectors

.074 .002 .001...

.001 .012 .005...
.
.
.

.3 .021 .164 ...

Classification Models

f3 c3 90 77 33 ...
13 00 8b 33 13 ...

.

.

.
00 70 48 8b 81 ...

BERT-based Embedding Model

(1) Section Interception

(2) Sequence Division

.
.
.

..
..Binary Program Seq1: GCC; O0

Seq2: Clang;O2
Seq3: GCC; O0
Seq3: GCC; O1

Sequence Provenance Joint Inference

GCC; O0

Figure 3: The architecture of BinProv.

is that O1 involves 43 optimization flags, which reduce code size.
The sequences are more similar between O2/O3 (NCD<0.58), and
the binary length under O2/O3 becomes longer. That is because O3
only adds 15 flags but involves more complex constructs to increase
the code size, such as overlapping blocks/instructions, inline data,
and tail calls [1].

2.2 Error Propagation in Reverse Engineering
Researchers have used the structural and statistical features to
represent the changes brought by compilers and optimization lev-
els [14, 32, 33], but one prerequisite is to first obtain the assembly
code via disassembly tools. However, the existing commercial and
open-source disassemblers, such as Angr [38], IDA Pro [12], and
Ghidra [24], have a long learning curve and cannot guarantee a
satisfying accuracy, particularly, for the stripped and optimized
binaries [1, 2, 5, 15].

A disassembler is mainly used for three tasks, namely, function
boundary identification, assembly instruction transformation, and
control flow graph extraction. Andriesse et al. [1] evaluate the per-
formance of 9 disassemblers on x86/64 binaries and endorse that a
higher optimization level can negatively impact the performance
of disassemblers. Though IDA Pro offers the best performance on
the above three tasks, it still cannot guarantee sufficient accuracy
for each task. For x64 binaries on GCC at O1, IDA Pro can achieve
up to 99% accuracy for all tasks; but at O3, the accuracy drops to
96% for assembly instruction conversion, 64% for function bound-
ary identification, and 90% for control flow graph extraction. The
trend is similar for the disassemblers on ARM architecture [15].
Recent studies [27, 35] even observe the worse performance of ex-
isting disassemblers in experiments, e.g., 58% accuracy for function
boundary identification. Besides, obfuscation also challenges the ef-
fectiveness of disassembly tools [18]. The experiment of Jiang et al.
[15] proves that the accuracy of the existing disassemblers reduces
significantly on locating the instructions and function boundaries
of the obfuscated binaries.

2.3 Optimization Levels in Real-world Projects
A large software project may be compiled with diverse configu-
rations to generate binaries from different source code, including
third-party libraries. For instance, we use GCC 8.2.0 to compile
Linux kernel 5.8 and the build log shows that the entire kernel
project is optimized with 2 O0 levels, 39,102 O2 levels, 50 O3 levels,
and 453 Os levels. However, we find that the optimization level used
to compile a single binary usually is the same, although different
binaries in a project may choose different optimization levels. We

Table 1: Optimization level usage in top 100 C/C++ projects
on GitHub.

of Opt
Levels

of
Projects

Distribution of Opt Options
O0 O1 O2 O3 Os

1 90 14 1 62 12 1
2 6 2 2 5 2 1
3 1 1 0 1 1 0
4 2 2 0 2 2 2
5 1 1 1 1 1 1

compile the top 100 C/C++ projects on GitHub and Table 1 records
the usage statistics of optimization levels in these projects. We see
that most projects (90) use only one optimization level, though
containing multiple source code files. In most cases, developers
compile both their own code and upstream third party code with
the same optimization options. Only 10 projects involve two or
more optimization levels. Six of them generate multiple binaries,
but each binary still uses one optimization option.

Binaries usually use one main optimization level (e.g., O2/O3)
when using multiple options. O2 is the most common optimization
level option, followed by O0 and O3. O1/Os are rarely used. Previous
works focus on classifying low optimization level (O0/O1) and high
optimization level (O2/O3), limiting their application in practice.
To restore the compilation configurations in real-world projects, it
is critical to distinguish the four optimization levels, particularly,
between O2 and O3. From the perspective of optimization purpose,
most projects focus on improving execution efficiency, but not the
target file size and compilation efficiency. Therefore, they are prone
to use O2/O3 rather than O0/O1. We conclude that most projects
(>96%) are prone to use the same optimization level to compile
individual binary file. Even when more than one optimization levels
are used in an individual binary, one optimization level dominates
the majority of the source code. Therefore, we can use majority
voting to further improve the identification accuracy.

3 DESIGN OF BINPROV
The architecture of BinProv is shown in Figure 3. It consists of four
stages: input pre-processing, embedding generation, classification,
and joint inference. For pre-processing, BinProv intercepts and
refactors the raw byte sequences from a given binary file. Then
BinProv encodes the inputs as embedding vectors with a BERT-
based embedding network, which aims to refine the semantics of
byte sequences. Later, with the embedding representations, BinProv
utilizes a classification network to identify the provenance of byte

BinProv: Binary Code Provenance Identification without Disassembly RAID 2022, October 26–28, 2022, Limassol, Cyprus

sequences. In this embedding-classifying paradigm, we adopt a
pretrain-finetune strategy. Based on the sequence-level provenance
identification, we combine multiple sequences to identify binary-
level and function-level provenance.

3.1 Input Pre-pocessing
As an end-to-end system, BinProv does not require complicated
manual feature extraction and data pre-processing. It only needs
simple operations to extract the formatted input sequences from
raw binary programs, as shown in Figure 3. First, BinProv inter-
cepts the .text section from the binary file so that BinProv can
focus on the instruction-related byte sequences. This is because the
.text section stores instructions and contains the most contextual
semantics [40]. Then, we split the .text section into a series of
byte sequences in hex (e.g. 0xcc, 0x77, 0xc3, ...).
Byte sequence representation b. The input byte sequence is
defined formally as a vector of hex values: 𝑏 = {𝑏1, · · · , 𝑏𝑖 , · · · , 𝑏𝑛},
where 𝑏𝑖 ∈ {0x00, · · · , 0xff}. 𝑛 is the sequence length, which is
restricted by the processing capacity of the embedding model [6].
Meanwhile, we also balance the integrality of instructions. For ARM
and MIPS architectures, each instruction is aligned by fixed length,
e.g., 64 bit(8 byte). Moreover, since x86 instructions are variable-
length. Thus, we take the longest sequence to increase the semantic
richness and set the length 𝑛 to a multiple of 8.

3.2 Embedding Generation
To better understand the contextual semantics, BinProv generates
the embeddings for byte sequences. The contextual semantics is
critical in the binary analysis since the same byte (or even byte
snippet) in different sequences can be parsed into different operands
or operators depending on their context. For example, byte c3 can
denote the opcode ret or the register rbx based on different context
bytes [21].

In BinProv, we employ a BERT-based embedding model to learn
the contextual semantics in byte sequences. Based on the trans-
former framework and multi-head self-attention mechanism, BERT
can learn the bidirectional and long-range contextual semantics in
the input sequences between each byte [39]. Besides, the training
cost of BERT is affordable (around 80 million trainable parameters),
compared with the state-of-the-art methods like GPT-3 (around
1 billion trainable parameters) [3]. Formally, the BERT model en-
codes the input byte sequence 𝑏 into a composite embedding 𝐸,
and updates 𝐸 in the transformer 𝑓 via back-propagation. The out-
put embedding in each transformer is expressed as 𝐸 𝑗+1 = 𝑓 (𝐸 𝑗),
where 𝑗 denotes the 𝑗𝑡ℎ layer. The updated embedding is known
as contextualized embedding [6, 22, 23, 28, 29]. The transformers
in BERT share the same architecture, so the output of the BERT
model can be expressed as 𝐸𝑓 𝑖𝑛𝑎𝑙 = 𝑓𝑒 (𝐸 (𝑏)), where 𝑓𝑒 represents
the whole embedding model, which consists of 12 transformers.
𝐸𝑓 𝑖𝑛𝑎𝑙 ∈ R𝑁×𝑀 , where 𝑁 denotes the length of the input byte
sequence and𝑀 denotes the dimension of the byte embedding.
Input representation E. In Figure 4, the input representation of
the BERT-based model is a composite embedding 𝐸, composed of
three parts: byte sequence 𝐸𝑏 , segment sequence 𝐸𝑠 , and position
sequence 𝐸𝑝 . The byte sequence 𝐸𝑏 = {𝐸𝑏 (𝑏1), · · · , 𝐸𝑏 (𝑏𝑛)} is a

T1

E1

Eb

Es

Ep

One-hot Encoding

Encoder

1

0x8b

1

Encoder

T2

E2

2

0x44

1

T3

E3

3

0x24

1

T4

E4

1

0xa0

2

Tn

En

3

0x04

L

....

....

....

....

....Position Sequence

Segment Sequence

Byte Sequence

Input Embedding Vectors

BERT Model

Output

....

....

....

Masked Byte

Figure 4: Pre-training of the BERT-based model on the
masked language model (MLM) task. The grey dash square
denotes the masked byte.

hex vector converted from the binary input by the vocabulary dic-
tionary. There is a total of 256 possible byte values in the vocabulary.
The vocabulary also contains 5 extra tags (padding ⟨PAD⟩, start-of-
sequence ⟨S⟩, end-of-sequence ⟨/S⟩, unknown ⟨UNK⟩, and mask
⟨MASK⟩) [26]. The segment sequence 𝐸𝑠 = {𝐸𝑠 (𝑏1), · · · , 𝐸𝑠 (𝑏𝑛)}
is defined to locate which binary program each byte belongs to,
when a byte sequence contains multiple fragments from different
programs. The position sequence 𝐸𝑝 =

{
𝐸𝑝 (𝑏1), · · · , 𝐸𝑝 (𝑏𝑛)

}
de-

notes an integer sequence encoding the position of each byte in the
binary program. The byte position is essential for understanding
contextual semantics since swapping two bytes can significantly
change the meanings of byte sequence.

The segment and position embeddings can effectively assist
BERT to understand the belonging and positional relations of each
byte. As shown in Figure 4, we use one-hot encoding to gener-
ate byte embedding vectors for these 3 input sequences, and con-
catenate them into a unified input vector formulated as: 𝐸 (𝑏) =

𝑓𝑐𝑜𝑛𝑐𝑎𝑡 (𝐸𝑏 (𝑏), 𝐸𝑝 (𝑏), 𝐸𝑠 (𝑏)).
Pre-training task. The BERT-based embedding model can be pre-
trained with two tasks, i.e., masked language model (MLM) and
next sentence prediction (NSP) [6]. MLM can help BERT learn
bidirectional contextual semantics, while NSP boost the capability
of BERT in sentence handling and paragraph matching. The latter
is not the goal in this paper. In addition, Liu et al.[19] found that
the BERT model pre-trained only with MLM can outperform that
pre-trained with both tasks. Therefore, we adopt the MLM task to
pre-train the BERT-based embedding model.

In Figure 4, the MLM task requires BERT to predict randomly
masked bytes. In this task, BERT will learn the dependencies be-
tween the masked bytes and their context bytes hence learn the
contextual semantics of the byte sequences. Assuming we mask
𝑡 bytes randomly in a byte sequence 𝑏, the masked byte set is
denoted as𝑚 = {𝑚1,𝑚2, · · · ,𝑚𝑡 }. We need to predict𝑚 using a
pre-trained model 𝑓𝑝 (;𝜃) in MLM, where 𝑓𝑝 represents the BERT
model stacking with a softmax layer to predict the masked bytes,
and 𝜃 represents the trainable parameters in BERT. The objective
of training 𝑓𝑝 is to search for the optimal 𝜃 to minimize the cross-
entropy loss between the inferred bytes (𝑚̂ = 𝑓𝑝 (𝑚𝑎𝑠𝑘 (𝑏);𝜃)) and

RAID 2022, October 26–28, 2022, Limassol, Cyprus Xu, et al.

the real bytes (𝑚), which can be formally expressed as:

argmin
𝜃

|𝑡 |∑︁
𝑖=1

−𝑚𝑖 log (𝑚̂𝑖) . (1)

By the gradient descent back-propagation, we can find the op-
timal parameters 𝜃 for Equation (1) so that BERT can learn the
contextual semantics of byte sequences. Then, we remove the soft-
max layer and use the outputs of the last transformer 𝐸𝑓 𝑖𝑛𝑎𝑙 as the
input features for provenance identification.

3.3 Provenance Classification of Byte Sequence
As shown in Figure 3, the third stage of BinProv is the classifica-
tion. We decompose the provenance identification task into two
sub-tasks: compiler type identification and optimization level iden-
tification. The task decomposition reduces the number of categories
to be classified, specifically, 8 combination categories are split into
2 compiler categories (i.e., GCC, Clang) and 4 optimization level
categories (i.e., O0/O1/O2/O3), respectively. We also find that spe-
cialized classifiers have better performance in the evaluation.

Both tasks share the same network architecture and only differ
in their labels. With the semantically-rich embeddings, we use a
two-layer fully connected neural network to identify the prove-
nance of byte sequences. The first layer aims to reshape the input
vectors and weaken the border weights of the embeddings. This
layer is designed for the x86 architecture with variable-length in-
structions, which can lead to broken instructions in the sequence
border. The second layer is equipped with a softmax function to
predict the provenance for each sequence. Let 𝑓𝑐 denote the classi-
fication model. Given an embedding 𝐸𝑓 𝑖𝑛𝑎𝑙 , the output is inferred
by 𝑦 = 𝑓𝑐 (𝐸𝑓 𝑖𝑛𝑎𝑙), where 𝑦 can be specialized as 𝑦𝑐 (compiler type)
or 𝑦𝑜 (optimization level). Overall, the whole forward mapping
function 𝐹 (;𝜃 ′) in BinProv can be expressed as:

𝑦 = 𝐹 (𝐸 (𝑏);𝜃 ′) = 𝑓𝑐 (𝐸𝑓 𝑖𝑛𝑎𝑙)
= 𝑓𝑐 (𝑓𝑒 (𝑓𝑐𝑜𝑛𝑐𝑎𝑡 (𝐸𝑏 (𝑏), 𝐸𝑝 (𝑏), 𝐸𝑠 (𝑏)))) .

𝑠 .𝑡 . 𝑦 ∈ {𝑦𝑐 , 𝑦𝑜 } , 𝑦𝑐 , 𝑦𝑜 ∈ N
𝑏 ∈ {0x00, ..., 0xff}𝑛

(2)

where 𝜃 ′ represents the total parameters of the embedding model
and the classification model.
Fine-tuning task. Based on the pre-trained parameters, we fur-
ther perform end-to-end fine-tuning to precisely adjust parameters
in order to fit with specialized downstream tasks. As depicted in
Equation (2), the objective function of the fine-tuning task is to
search for the optimal 𝜃 ′ that minimizes the cross-entropy loss.
There are 3 differences between fine-tuning and pre-training. First,
the parameter space is different (𝜃 ≠ 𝜃 ′) due to the different struc-
tures of output layers. Second, the starting search points in their
parameter space are different. Take the embedding model 𝑓𝑒 as
an example, the parameters in fine-tuning are updated based on
the pre-trained values, while the parameters in pre-training are
updated from random values. Finally, the size of training set in
fine-tuning is much smaller than that in pre-training, because only
the parameters of classification model (account for a small portion)
need to be adjusted significantly during the fine-tuning phase.

Table 2: The statistics of binaries selected from BINKIT [17].

Dataset # of
Projects

of
Binaries

of
Arch.

of
Opt

of
Comp.

NORMAL 51 6280 4 4 2
OBFUSCATION 51 785 1 4 2

3.4 Joint Classification of Function and Binary
BinProv can identify the compiler type and optimization level of
each byte sequence. However, any individual byte sequence can not
represent a meaningful entity (e.g., function, binary program). On
one hand, different parts of a binary may be compiled with different
configurations, theoretically. On the other hand, the construct of
partial functions may not change with provenance, such as the
auxiliary function generated by the compiler. Hence, to infer the
entity provenance, we need to aggregate the involved sequences
for joint classification.

Our joint classification is based on the observation that sequences
belonging to the same binary should have the same provenance
with high probability. Therefore, it is valuable to adjust the overall
inference by jointly using local consistency [32]. In this paper,
we infer the provenance of a binary by majority voting over all
sequences that belong to the same binary.

For the binary with diverse provenances, we utilize the majority
voting result over the sequences belonging to the same function,
because a single function can only have one type of provenance. Our
evaluation shows that majority voting can significantly improve
the performance of BinProv, compared with the direct classification
over a single sequence.

4 IMPLEMENTATION
In this section, we first introduce the implementation environment
and training settings of BinProv, and then discuss the dataset, base-
lines, and metrics used to evaluate BinProv.

4.1 BinProv Implementation
Environment. We build BinProv using PyTorch 1.8.1 with CUDA
11.2 and CUDNN 8.1.0. The neural network architecture of BinProv
is conducted with the Fairseq toolkit [26]. The entire system is
deployed on a Ubuntu 20.04 server with an Intel Xeon 5122 CPU
and 512GB RAM. We train BinProv using 2 NVIDIA GTX 2080-Ti
GPUs with 11 GB memory.
Training settings. Since we pre-train BinProv with the MLM
task, we adjust the hyperparameter setting based on the existing
schemes [8, 19] that only focus on MLM. For the masking strategy,
we adopt the settings in Pei et al.’s work [27], because they also
apply BERT on the binary analysis. We randomly select 20% bytes
to mask in each sequence. In these randomly-chosen bytes, 50% are
replaced with the ⟨MASK⟩ tags, and the other 50% are replaced with
random hex values. Moreover, these masked bytes are different at
each epoch, which means the random seed is reset for each epoch.

For the dataset division, we first construct the pre-training set
by selecting at least one binary (2 × 4 variants) from each software
project. Noted that the dataset we use includes 51 software projects
(see 4.2). For the training and testing data splitting, we randomly

BinProv: Binary Code Provenance Identification without Disassembly RAID 2022, October 26–28, 2022, Limassol, Cyprus

select different binaries to construct the fine-tuning set and testing
set. The data-split ratio of fine-tuning and testing is 8:2. We further
ensure no overlapping between training and testing sets so that our
experiments can evaluate the real generalization ability of BinProv.

4.2 Experiment Settings
Dataset. In this paper, we use the BINKIT benchmark collected by
Dongkwan et al. [17] to train and evaluate BinProv on the prove-
nance task. The dataset contains binaries from 51 real-world GNU
software packages. To our best knowledge, BINKIT has the largest
capacity and the best diversity in all public benchmarks. BINKIT
compiles the source code using 2 compilers (GCC and Clang) with
4 default optimization levels (O0/O1/O2/O3) under 4 architectures
(x86_64, x86_32, ARM, and MIPS). In this paper, we focus on GCC
and Clang because they are the most widely used cross-platform
compilers and other compilers can only target few architectures.
The statistics of binaries are shown in Table 2.

We mainly conduct the performance evaluation and comparison
on binaries under the x86_64 architecture. This is because x86_64
is the worst case for BinProv due to the potential broken instruc-
tions near the sequence border. We also use BinProvto identify the
architecture and test the performance of BinProv on other archi-
tectures. Besides the binaries compiled in normal mode, BINKIT
also provides binaries compiled with other options, such as PIE
(-fpie, -pie), no-inline (-fno-inline), LTO (-flto), and obfus-
cation (Obfuscator-LLVM [16]). The first three options are extra
optimization flags, while obfuscation is a common anti-reverse
engineering measure. If a binary is obfuscated, the disassemblers
become more unreliable. Therefore, we also test the BinProv per-
formance on obfuscated binaries.

In addition, we also compile some common algorithm programs
[37] for the experiments in our case studies. The algorithm dataset
includes a series of implementations of classical algorithms (341
programs), such as sorting and searching algorithms. Compared
with BINKIT dataset, there are fewer functions and simpler call
relations in binaries of the algorithm dataset, in which we can label
easily the ground truth (e.g., the function type).
Baseline Solutions.We select two baseline methods from existing
works, Origin [32] and O-glassesX [25]. Origin is the earliest ML-
based provenance recovery approach proposed by Rosenblum et
al. O-glassesX is the CNN-based provenance identification model
proposed by Otsubo et al. in 2020. Both methods released the source
code and claimed their identification accuracy exceeds 90% and
publicly release research artifacts. Other recent method (e.g., [14])
does not provide executable source code. Because, neither baselines
specifies the disassembly tool used, we utilize the objdump tool to
disassemble binaries to extract after-disassembly features.

In addition, we construct two other methods for comparisons,
i.e., BinRNN and O-glassesX*. For BinRNN, instead of using the
embedding model, we convert the hexadecimal byte sequence into
a binary sequence and deploy a RNN model for classification. Ex-
perimental comparison between BinProv and BinRNN can verify if
the BERT model effectively learns the contextual semantics of the
byte sequences. O-glassesX* is a variant of O-glassesX, requiring
that the input bit sequences are converted from 16 instructions

Table 3: Accuracy comparison of BinProv with two baseline
methods on the x86_64 architecture.

Basic task BinProv w/o2 Origin [32] O-glassesX [25]

Compiler (G/C) 95.47% 97.24% 97.60%
Opt level (H/L) 98.90% 96.14% 98.20%

Overall 94.77% 93.92% 96.15%

(16×128 bits). However, O-glassesX* skips the disassembly and di-
rectly intercepts the top 16×128 bits from the binary. O-glassesX*
is used to verify if the performance of the baseline will degrade
without disassembly.
Metrics.We mainly use accuracy to measure the performance of
BinProv and baselines, since the data distribution is balanced in our
dataset. Accuracy is defined as the percentage of correctly classified
samples over the total samples. We also use precision, recall, and
F1 score to analyze the false predictions of different optimization
level options.

Moreover, we use normalized compression distance (NCD) [31]
to measure the degree of similarity between two byte sequences.
NCD refers to the ratio of the saved space size by the maximum
sequence size after compression. We use LZMA algorithm [13] to
achieve lossless compress for the byte sequences in this paper.

NCD(𝑥,𝑦) = 𝐶 (𝑥 · 𝑦) −𝑚𝑖𝑛(𝐶 (𝑥),𝐶 (𝑦))
𝑚𝑎𝑥 (𝐶 (𝑥),𝐶 (𝑦)) (3)

where 𝐶 (𝑥) represents the size of sequence 𝑥 after compression,
while 𝑥 · 𝑦 indicates the concatenation of two sequences (𝑥,𝑦). A
higher NCD means less similar between two sequences.

5 EXPERIMENTAL RESULTS
In this section, we evaluate the performance of BinProv using mas-
sive real-world binary programs. We compare the accuracy of Bin-
Prov with those of baseline methods on different tasks and code
granularities. Meanwhile, we evaluate the robustness of BinProv
under different architectures and apply BinProv on extra compiler-
related provenance and binary similarity detection tasks.

5.1 Accuracy of Provenance Identification
We first evaluate the performance of BinProv for the provenance
identification task under the x86_64 architecture.
a) Binary classification of compiler and optimization level.
Table 3 shows the accuracy of BinProv and two baseline methods
on two tasks, i.e., binary classification of the compiler (GCC/Clang)
and optimization level (Low/High). Moreover, BinProv w/o means
the model without majority voting; thus Table 3 depicts the results
of individual sequences.

In Table 3, the accuracy of all methods on the compiler identifi-
cation task exceeds 95%. The performance of BinProv w/o (95.47%)
is not the best, but the gap with other methods is relatively small
(around 2%). For the compiler identification task, the high accuracy
mainly results from the apparent compiler patterns. For example,

2BinProv w/o means BinProv without majority voting.

RAID 2022, October 26–28, 2022, Limassol, Cyprus Xu, et al.

Table 4: Performance of BinProv and two baseline methods
on fine-grained classification tasks of optimization levels.

Opt level BinProv w/o Origin [32] O-glassesX [25]

O0/O1/O2/O3 91.07% - -
O0/01 98.49% 86.40% 89.20%
O2/O3 83.64% 51.60% 64%

"push ebp" always appears in the prologue of the functions com-
piled by GCC. Clang also leaves specific patterns in the compiled
binary. For the optimization level classification task, all the ap-
proaches achieve higher accuracy (>96%). BinProv w/o (98.9%) out-
performs other 2methods, while Origin performs the worst (96.14%).
The performance of optimization level identification also results
from the significant differences between high/low levels. There are
lots of distinct optimization flags between O0/O1 and O2/O3. For
instance, O2 enables 52 more optimization flags than O1 in GCC
8.2.0 [11]. The binary constructs can be greatly changed by these
added flags, such as -falign-functions, -finline-functions,
and -falign-jumps. In Clang 6.0, O2 only changes 11 flags based
on O1; however, the optimization target is changed. For example,
the flags -vectorize-loops and -vectorize-slp generate vector
instructions, which greatly increase the size of binary code.
b) Fine-grained classification of optimization levels. Relying
on the embedding model to extract contextual semantics, BinProv
can uncover more subtle differences between optimization levels.
Hence, we further extend the optimization level classification to
4 options i.e., O0/O1/O2/O3. Table 4 shows the performance of
BinProv and two baselines on 3 tasks with different granularities.
Limited by their design frameworks, Origin and O-glassesX cannot
make 4-class classification for optimization levels. However, we use
these two baselines to distinguish O0/O1 and O2/O3, respectively.

In Table 4, the accuracy of Origin and O-glassesX drops signif-
icantly compared with their accuracy on the coarse-grained task
(Table 3). For the O0/O1 task, O-glassesX drops by 9% in accuracy
while Origin drops by 10%. For the O2/O3 task, the performance
degrades more significantly. Origin reaches 51.6% (almost equiva-
lent to random decision) and O-glassesX achieves 64%. In contrast,
the performance of BinProv is much better. BinProv can achieve
91% accuracy on the fine-grained O0/O1/O2/O3 task and 98.5% ac-
curacy on the O0/O1 task. Although the accuracy drops to 83.64%
on the O2/O3 task, BinProv still outperforms the other methods by
20% in accuracy. Our study find 74% of real-world projects mainly
use O2/O3 for optimization, thus it is vital to distinguish O2/O3.
As indicated by the results, distinguishing O2 and O3 is the most
significant challenge in optimization level identification. O3 has 13
more optimization flags than O2 in GCC 8.2.0[11]; while O3 adds
only 2 flags based on O2 in Clang 6.0 [4]. The difference between
O2/O3 is obviously smaller than that between O0/O1 or O1/O2.

Furthermore, we compare the precision, recall, and F1 score of
BinProv for each optimization level in Table 5. For O0 and O1, Bin-
Prov performs well under both GCC and Clang. However, for O2
and O3, both the precision and recall are less than 85% due to the
subtle differences between these 2 levels. Moreover, the O1 per-
formance under Clang is worse than that under GCC since the

Table 5: Precision, recall, and F1 score of BinProv in optimiza-
tion level identification task under GCC / Clang.

GCC Clang

O0 O1 O2 O3 O0 O1 O2 O3

Precision 99% 98% 74% 82% 96% 81% 85% 83%
Recall 99% 99% 77% 79% 98% 97% 72% 75%

F1 score 99% 98% 77% 79% 97% 88% 78% 79%

Table 6: Performance of BinProv and two baseline methods
with majority voting at function and binary level.

Provenance BinProv w/3 Origin [32] O-glassesX [25]

Fu
nc

Compiler (G/C) 99.98% 96.3% 97.60%
Opt level (H/L) 99.40% 90.12% 98.20%

Opt level (O2/O3) 94.70% 51.60% 64%

B
in

Compiler (G/C) 100% 100% 100%
Opt level (H/L) 100% 100% 100%

Opt level (O2/O3) 99.8% 60.1% 85.3%

precision is only 81% under Clang. This is because BinProv is prone
to misclassify the sequences on O2/O3 as O1 under Clang due to
the high similarity. In addition, the precision of O2/O3 under GCC
is lower than that under Clang, because O2 and O3 share more
optimization options in GCC. In general, the overall performance
(F1 score) under GCC is better than that under Clang due to the
following reasons. First, the number of training sequences under
GCC is more than that under Clang, thus the embedding model
can learn more semantics from GCC. Although we select the same
number of sequences under GCC and Clang, binaries under GCC
are generally longer than those under Clang by 12%. Second, Clang
generates more auxiliary functions, which remain the same con-
struct on different optimization levels. We will analyze the details
of auxiliary functions in Section 5.2.
c) Joint classification at binary and function level. An individ-
ual sequence cannot represent the provenance of an entire function
or binary, thus we aggregate the sequences to make joint inference.
Table VI shows the results of BinProv, Origin, and O-glassesX at
function and binary level aggregation. We compare their perfor-
mance on 3 tasks: compiler classification, high/low optimization
level classification, and O2/O3 classification.

Comparing the results in Table 6 and Table 3, we find that the
accuracy at the function and binary levels improves significantly
via majority voting. For the function level, the performance of Bin-
Prov increases by 4.51%, 0.5%, 11.06% for these 3 tasks, respectively.
On the contrary, the accuracy of Origin drops by 6.02% on the
high/low optimization level task because Origin cannot make joint
classification when only inputting a single function. For the binary
level, these 3 methods can achieve 100% accuracy on the basic 2
tasks. Based on our observation c) in Section 2.3, our joint inference
can apply to at least 96% of the programs. Moreover, the perfor-
mance gain at the function level is lower than that at the binary
3BinProv w/ means BinProv with majority voting.

BinProv: Binary Code Provenance Identification without Disassembly RAID 2022, October 26–28, 2022, Limassol, Cyprus

Table 7: The Robustness of BinProv under different settings
(i.e., architectures and obfuscation).

Setting Compiler(G/C) Opt(O2/O3) Opt(O0/1/2/3)

IS
A

x86_64 95.47% 83.64% 91.07%
x86_32 96.22% 82.25% 89.24%

ARM_64 98.80% 87.46% 93.76%
MIPS_64 98.55% 87.91% 94.10%

O
B
F SUB 93.21% 70.15% 75.60%

BCF 95.03% 77.74% 83.28%
FLA 94.66% 79.15% 84.33%

level. The number of sequences belonging to a function is less than
those belonging to a binary; thus sequences belonging to a function
may not contain enough semantics to imply structural changes.
Also, some functions even do not change with different compilation
configurations. In summary, joint prediction can further improve
identification performance with a higher confidence..
d) Robustness across different architectures. BinProv is an
architecture-agnostic method that does not extract features based
on the domain knowledge of specific architecture. We first fine-
tuned our model to identify different architectures. we observe that
BinProv achieve 99.99% accuracy on identifying x86, ARM, and
MIPS architectures. Besides, O-glassesX [25] has similar perfor-
mance.

Then, we compare the performance of BinProv on the compiler
optimization level tasks with different architectures, as shown in
Table 7. We find that BinProv achieves better performance under
the ARM_64 and MIPS_64 architectures for all 3 tasks, because the
fixed-length instructions can guarantee the integrality of sequences
near boarder.

Besides, for the optimization level tasks, we find the performance
under x86_32 is inferior to that under x86_64. We analyze binaries
under these 2 architectures and have 2 observations. First, the num-
ber of instructions per function under x86_32 is nearly 90% more
than that under x86_64. Second, there are more auxiliary functions
under x86_32. For instance, the call __x86.get_pc_thunk.bx ap-
pears multiple times in each binary to redirect position-independent
code. Therefore, the byte sequences under x86_32 may have multi-
ple fixed components that do not change with the provenance.
e)Robustness to obfuscated binaries. In Table 7, we also evaluate
the BinProv performance on obfuscated binaries. The experiment
dataset includes the binaries obfuscated by the obfuscator-LLVM
tool [16]. We study three popular obfuscations techniques: instruc-
tion substitution (SUB), bogus control flow (BCF), and control flow
flattening (FLA). SUB replaces the original opcodes with more com-
plicated instruction sequences. BCF changes the function call graph
by adding basic blocks. FLA disturbs the original CFG by creating
fake control flows.

We find that the obfuscation has a limited effect on the compiler
identification, where the performance fluctuation does not exceed
2%. However, in the optimization level tasks, the obfuscation causes
significant performance degradation, especially for the instruction
substitution (SUB). BCF and FLA techniques change the basic block
relations to prevent reverse engineering from restoring the correct

Table 8: Performance of BinProv and two modified baselines
using raw byte sequences.

Task BinProv w/o O-glassesX* BinRNN

Compiler (G/C) 95.47% 91.4% 90.89%
Opt level (H/L) 98.90% 74.14% 63.20%

Opt level (O2/O3) 83.64% 54.1% 53.62%

Overall (Basic task) 94.77% 75.16% 64.64%

CFG. Meanwhile, BinProv does not rely on the CFG-based struc-
tural features, thus BCF and FLA are more robust to obfuscation
(drop by 5%). Conversely, SUB only replaces original operators with
functionally equivalent operators and hence breaks the contextual
semantics. Hence, the performance with SUB obfuscation drops by
around 15%, but BinProv still outperforms the two baselines.

5.2 Impacts of Model Components
We also investigate the potential factors that may impact the per-
formance of provenance identification, including the embedding
model, binary length, sequence similarity, auxiliary function con-
structs, and sequence location.
a) Impact of the embeddingmodel. To evaluate the impact of the
embedding model, we compare the performance of BinProv with
two modified baselines, i.e., O-glassesX* and BinRNN. O-glassesX*
omits disassembly and reshaping instructions, but inputs the raw
byte sequence into the network of O-glassesX. BinRNN simplifies
BinProv by replacing the BERT-based embedding model with a
simple RNN structure.

Table 8 shows the performance of these modified methods on 3
tasks. Compared with O-glassesX and BinProv, both O-glassesX*
and BinRNN have performance degradation on all tasks. The per-
formance of O-glassesX* on compiler identification falls slightly by
6%, but the accuracy on optimization level tasks drops dramatically,
especially for the O2/O3 task (54.1%). This is because O-glassesX*
surrenders the semantics from disassembly and only relies on the
CNN-based encoders to extract semantics from the raw byte ma-
trix. The CNN-based encoder model is inferior to the Bert-based
embedding model in terms of learning semantics from the raw byte
sequence. For the BinRNN without embedding model, the perfor-
mance drops even more than O-glassesX*, which results from the
semantic sparsity of raw binary sequence. The gap between BinProv
and BinRNN indicates that the BERT-based embedding model in
BinProv effectively eliminates the sparse semantic problems caused
by the lack of disassembly.
b) Impact of binary length and sequence similarity.Our prelim-
inary analysis confirms that the optimization level has a significant
impact on the length and similarity of the binary. We first measure
the impact of binary length on the optimization level identification
task. Figure 5(a) shows the accuracy on the binaries with different
numbers of sequences. Each circle denotes a program with 4 binary
variants (i.e., O0/O1/O2/O3). We find that longer binaries tend to
have higher accuracy in optimization level identification. Most of bi-
naries with accuracy higher than 85% havemore than 100 sequences.
This means it has higher probability to correctly identify optimiza-
tion levels if the binaries are long enough. We annotate 4 binaries

RAID 2022, October 26–28, 2022, Limassol, Cyprus Xu, et al.

 0.6

 0.7

 0.8

 0.9

 1

 0 250 500 750 1000 1250 1500 1750 2000

A
cc

ur
ac

y

#Sequences

nettle-lfib-stream

nettle-pbkdf2

asn1Coding
librec.so.1.0.0

libunistring.so.2.1.0

(a) #sequence vs accuracy.

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
cc

ur
ac

y

NCD

nettle-lfib-stream

nettle-pbkdf2

asn1Coding
librec.so.1.0.0

libunistring.so.2.1.0

(b) NCD vs accuracy.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 250 500 750 1000 1250 1500 1750 2000

N
C

D

#Sequences

nettle-lfib-stream
nettle-pbkdf2

asn1Coding

librec.so.1.0.0

libunistring.so.2.1.0

(c) #sequence vs NCD

Figure 5: Impact of the binary length (#sequences) and NCD on the accuracy of optimization level identification task over the
testing set (103 binaries). We annotate 5 programs as red circles, where 2 are the shortest binaries, 2 are the longest binaries,
and 1 has the highest accuracy.

 0

 0.2

 0.4

 0.6

 0.8

 1

0-.2 .2-.4 .4-.6 .6-.8 .8-1

A
cc

ur
ac

y

20% Percentile Intervals of Relative Location

Figure 6: The accuracy of BinProv on sequences at different
locations. The first bar represents the top 20% sequences in
the binaries, and the other 4 bars denote later segments in
the binaries.

with the longest and shortest length. The two shortest binaries
coincidentally have the lowest accuracy (nettle-lfib-stream,
nettle-pbkdf2), while the accuracy of the longest binary is rela-
tively high (librec.so.1.0.0, libunistring.so.2.1.0).

We also assess the impact of sequence similarity (NCD) on the
optimization level identification. Figure 5(b) depicts the relation-
ships between identification accuracy and different NCDs. We can
see that most of the binaries with high accuracy are clustered in the
high NCD area. Therefore, it is easier to distinguish the optimiza-
tion levels for the binaries with more distinct sequences. In Figure
5(c), there is a certain correlation between the length and similarity
of the binaries (the Pearson correlation coefficient R = 0.611). The
relative positions of the 4 red points are similar on Figures 5(a, b,
c). Thus, longer binaries tend to have higher NCD while shorter
binaries will have fewer byte changes. We argue that it is caused
by the inherent auxiliary function constructs in binary.
c) Impact of the sequence location in binaries. We analyze the
performance for the sequences at different positions in a binary.
We divide the binary sequences into 5 equal intervals based on
relative position and evaluate the accuracy for sequences within

each interval. Here, each binary in the testing set has at least 50
sequences.

As shown in Figure 6, the accuracy of optimization level identi-
fication gradually decreases from the head to tail of a binary. The
median accuracy of sequences in the first interval (the top 20th
percentile in position) is 89.1%. For the next 4 intervals, the median
accuracy drops by 4.1%, 6.3%, 6.6%, and 10.7%, respectively. This is
because the header sequences have more intact functions. We find
84.6% of the first sequences in our test set contain at least 8 intact
functions. Therefore, header sequences usually contain relatively
complete semantics. However, the deviation of the accuracy in the
last interval (the last 20th percentile in position) is significantly
greater than that of other intervals. This is because tail sequences
tend to be shorter than other sequences and contain fewer intact
functions.
d) Impact of functions with fixed construct. There are three
types of functions within the .text section. The first type is the
user functions that are derived from the source code and responsible
for the functional implementation. The second type is the library
functions that are linked statically from the third-party library code.
The third type is the helper functions that are derived from the
compiler and responsible for starting up, initializing, and executing
the entire procedure. For execution efficiency and security, most
projects link library code dynamically rather than statically. There-
fore, there are few library functions in the .text section. However,
there are many compiler helper functions. The GCC generates 7
helper functions in the .text section, when compiling a C program
that only contains an empty main() function.

Most helper functions have fixed functionalities and structures.
To evaluate the impact of compiler helper functions, we first com-
pare the function name and sequence similarity of 4,998 functions
in 43 binaries compiled with GCC. We find that 247 functions (4.9%)
have the same sequences on at least 2 optimization levels, which are
partially listed in Table 9. For example, the structure of _start func-
tion does not change with the compiler and optimization level in all
binaries. But its offset can be modified with the optimization level.
Then, we also compare some helper functions with the same name
but compiled by different compilers. GCC andClang generate helper
functions with the same function name but with different structure,

BinProv: Binary Code Provenance Identification without Disassembly RAID 2022, October 26–28, 2022, Limassol, Cyprus

Table 9: Functions with fixed construct (partial samples).

Function name Binary code Assembly code Compiler Opt Level

_start f30f1efa31ed4989d15e · · · endbr64;xorebp,ebp;movrdx,r9;poprsi · · · GCC/Clang O0/O1/O2/O3
register_tm_clone be504040004881ee504040004889f0 · · · mov<value>,esi;mov<value>,esi;movrsi,rax; clang O0/O1/O2/O3
register_tm_clone 488d3d792d0000488d35722d0000 · · · learip,rdi;learip,rsi;subrdi,rsi; GCC O0/O1/O2/O3

frame_dummy f30f1efae977ffffff0f1f8000000000 endbr64;jmpq<reg_tm_clones>;nopl0x0(%rax) GCC O2/O3
frame_dummy f30f1efae977ffffff endbr64;jmpq<reg_tm_clones> GCC O0/O1

_dl_relocate_static_pie f30f1efac3662e0f1f84000000000090 endbr64;retq;nopwcs:0x0(rax,rax,1);nop Clang O0/O1/O2/O3
exp_search.part.0 440fb7c64889d1be01000000eb09 · · · movzwlsi,r8d;movrdx,rcx;mov0x1,esi; · · · GCC O2/O3

Table 10: The performance of BinProv and BinComp on the
compiler helper function detection.

Method Prov. O0 O1 O2 O3 Mixed

BinProv GCC 99.9% 99.9% 99.8% 99.9% 99.8%Clang 99.9% 99.9% 99.9% 99.8%

BinComp [30] GCC 99.8% 99.9% 98.6% 99.1% 73.7%Clang 99.7% 99.7% 99.6% 99.7%

such as register_tm_clones. Some helper functions are gener-
ated by specific compiler. For instance, _dl_relocate_static_pie
function is generated only by Clang.

Some user functions with short sequence also remain the same
structurewhen using the O2/O3 level, such as the function sum(a,b)
in Figure 1. These user functions with fixed structure account for a
higher proportion in small-size binaries. One existing approach [30]
extracts helper functions by intersecting the disassemble functions
across compiled binaries, which is inaccurate due to the user func-
tion with fixed structure. Therefore, we fine-tune BinProv to detect
the compiler helper function and feed back the results into the
identification of the compiler and optimization levels, which can
significantly improve the previous performance.

5.3 Case Study I: Compiler Helper Function
Detection

In this study, we fine-tune BinProv to detect the compiler helper
functions from the user functions and library functions. We use
the algorithm dataset [37] in this case study, because the ground
truth (helper functions) can be verified more accurately when there
are few user functions and simple library calls in programs. We
use the binaries from the sorting programs (264 binaries consisting
of 2,516 functions) to train the model and searching programs (88
binaries consisting of 709 functions) for the performance evalua-
tion. We compare BinProv with the extraction approach used in
BinComp [30], in which the compiler helper functions are obtained
by intersecting the sets of disassembled binaries from different
programs. The comparative results are shown in Table 10.

We first split binaries into 8 test sets in terms of the prove-
nance. BinProv achieves very high accuracy (>99.8%) in all test
sets. BinComp [30] also does well, since most compiler helper
functions have fixed structures. However, BinComp can hardly
detect some special helper functions. For instance, the function
exponential_search.part.0 in program exponential_search
is generated by GCC from a bigger function, in which some parts of

Table 11: The performance of the binary code similarity de-
tection on the mixed and classified datasets.

Method Top-1 Top-5

Mixed Classified4 Mixed Classified

TIKNIB [17] 74.5% 88.4% 81.3% 95.2%
Gemini [41] 64.2% 82.9% 72.2% 91.6%

the control flow could be inlined but GCC cannot inline the entire
function. Therefore, it splits the function to leave the major part in
its own function, which is named with the original function name
plus .part.<number>, and inlines the rest in other functions.

We then compare BinProv and BinComp on the mixed test set.
Given compiler and optimization levels unknown, the BinProv’s
performance is stable but the BinComp’s performance falls dramati-
cally (73.7%). BinComp randomly selects 2 binaries to intersect their
assembly code, but the compiler conducts distinct assembly code
even for helper functions under the same name. Besides, not all
helper functions keep the same structure across different optimiza-
tion levels. For example, the frame_dummy function has a different
structure between O0/O1 and O2/O3. We attempt to select multiple
programs and intersect them, whereas this method increases the
accuracy as well as the time complexity.

After identifying the compiler helper functions, we apply the
results to benefit the compiler and optimization level tasks. Most
compiler helper functions are sensitive to the compiler family but
stable to the optimization levels. In the compiler identification
task, we only input the compiler help functions to BinProv. In
the optimization-level recognition task, we remove all compiler
helper functions and use the sequence of user functions and library
functions as the input. Accordingly, the accuracy on the compiler
identification task increases by 0.4%, and the accuracy on the opti-
mization level task increases by 2.1%.

The identification of compiler helper functions can also help
various tasks in binary analysis, such as authorship attribution,
function recognition, and clone detection, in which filtering out the
compiler help functions is a critical pre-processing step to reduce
false positives [30].

5.4 Case Study II: Binary Similarity Detection
Existing work has confirmed that binary code similarity detection
suffers from cross-platform binaries [7, 10, 17, 31, 36, 41]. In this

4Query and target functions are classified by BinProv.

RAID 2022, October 26–28, 2022, Limassol, Cyprus Xu, et al.

study, we apply the identified provenance results into the binary
similarity detection task. Before detecting similar binaries, we first
use BinProv to determine the provenance of the query function.
Specifically, we divide the target binary dataset into 8 target sets
according to the provenance. We then detect similar functions in
the target set consistent with the query function’s provenance.
Furthermore, we use BinProv to label compiler helper functions
and remove them from the target binary dataset since they usually
are not interesting target functions.

We employ two current binary code similarity detectionmethods,
i.e., TIKNIB [17] and Gemini [41]. Both claim to effectively identify
cross-platform binaries. TIKNIB uses a hill climbing approach to
greedily select features for cross-platform binaries and calculate the
similarity score based on the computation of the relative difference.
Gemini uses the graph-neural-network-based method to generate
embeddings for binary code similarity detection.

To ensure sufficient similar functions from similar source code,
we additionally compile coreutils 8.32 and binutils 2.35.
Then we test the performance of TIKNIB and Gemini on the 1,690
binaries from coreutils 8.24/8.32 and binutils 2.29/2.35
(coreutils 8.24 and binutils 2.29 are included in the BINKIT
dataset). There are 127,456 functions after removing the compiler
helper functions. We select 500 different query functions, and the
rest make up the target function set. Because the target task and
model structure remain the same, we do not retrain the Gemini
model. In the end, we compare their performance based on the
average hit rate of queries under top-1 and top-5 values. In Ta-
ble 11, we find that the performance of TIKNIB increases by 13.9%
and 12.4%, for top-1 and top-5 hit rates, respectively. The perfor-
mance of Gemini increases by 18.7% and 19.5%, respectively. Al-
though the performance improvement of Gemini is higher than
that of TIKNIB, Gemini still has lower hit rates than TIKNIB on
both mixed and classified datasets. In general, BinProv significantly
improves the performance of binary code similarity detection. The
pre-classification using BinProv helps the similarity detection task
to reduce the search space so that improve the matching possibility
of target binaries.

6 DISCUSSION
The evaluation results demonstrate at least two advantages of Bin-
Prov. First, BinProv does not depend on any auxiliary information
except plain byte sequences, thus it can eliminate the accumulated
error from disassemblers and the complexity of feature engineering.
In our experiments, the baselines are implemented based on the
premise that the disassembly is accurate. As stated in Section 2.2,
the disassembler accuracy drops as the optimization level increases.
When the disassembler accuracy is 90%, the highest accumulative
accuracy of baselines drops to 87.6% (O-glassesX), much lower
than that of BinProv. Moreover, BinProv can still achieve a good
performance on obfuscated binaries. Second, BinProv can classify
optimization levels in finer granularity by subtly learning contex-
tual semantics. Compared to previous works, BinProv extends the
identification of the optimization level from high/low levels to four
fine-grained options. In particular, O2/O3 can be distinguished with
a higher accuracy, which is the most commonly used in real-world

projects. The accuracy of BinProv surpasses all baselines by around
30% on O2/O3 identification.

BinProv has some limitations. First, the header and tail of se-
quences under x86 may be broken instructions, since we split the
sequences based on the fixed length. Though we add a layer to
weaken the weights of borders of the sequence, the performance
of BinProv under x86 is still slightly worse than that under ARM
and MIPS. Second, we use the .text section in binary as the input;
however, non-code bytes may be mingled in the .text section, such
as alignment bytes and padding bytes between functions [1, 32].
These non-code bytes have a negative impact on the representation
of a binary’s semantic; however, it is still a challenge to distinguish
the data embedded in the code section. Third, attackers may adopt
new countermeasures against BinProv. For instance, our experi-
ments show that instruction substitution (SUB) is effective in hiding
the original context semantics. Thus, when the SUB obfuscation
can be applied multiple times, it becomes much harder to identify
provenance [16, 17].

For future work, as we observe that developers often use extra op-
timization flags in addition to the optimization level in real projects
(see Section 2.3), we plan to conduct a more detailed identification
of optimization flags used during compilation, which may be useful
for downstream binary analysis tasks. Moreover, BinProv could
also be applied for other tasks. For instance, we can use BinProv
to identify the third-party components from binary packages by
checking the different provenances.

7 RELATEDWORK
The compilation provenance identification task was first proposed
by Rosesenblum et al. [33] in 2010, initially dedicated to identify-
ing the source compiler of binary programs. Their approach is to
extract statistical instruction segment patterns from binary code in
each function [34]. Further, Rosesenblum et al. [32] designed Ori-
gin to identify more provenance (compiler and optimization level)
based on ML-based models (e.g., SVM and CRF). They first captured
the pattern of function entry points (i.e., idiom, a short sequence
of instructions with wildcards). Their basic idea is that different
compiler provenance usually means different idiom combinations.
They also extracted the CFG as an auxiliary feature.

Rahimian et al. [30] proposed BinCamp, which builds a three-
layer attribution model for the compiler provenance identification
task using function-level features. They also extracted function fin-
gerprinting features based on the compiler-related functions, and
then built a neural network to identify the provenance. However,
BinComp relies on compiler-related functions, which are useful
for the compiler identification but against the optimization level
identification. Otsubo et al. developed O-glassesX [25] to transform
binary code into binary matrices and identify the provenance us-
ing a CNN-based image recognition approach. BinProv shares a
similar design idea as O-glassesX, that is, pay little attention to
the feature extraction process, but design a neural network struc-
ture with higher performance. However, O-glassesX still relies on
a disassembly tool, while BinProv does not.

In industry, disassembly tools are also integrated with the prove-
nance identification function, e.g., IDA Pro [12]. It mainly relies on

BinProv: Binary Code Provenance Identification without Disassembly RAID 2022, October 26–28, 2022, Limassol, Cyprus

the signatures of binary code to retrieve the compilation informa-
tion. However, the signature database currently relies on manual
updates and they may fail when there is a slight signature difference
between the query and target programs.

Recently, some methods attempt to construct the embedding
representations for binaries via the graph neural networks (GNNs).
For example, Massarelli et al. build an attributed control flow graph
(ACFG) by representing each basic block as an embedding vec-
tor [20]. Yuede et al. propose a similar approach that embeds mul-
tiple features into the ACFG, including statistical features at the
binary level and the function level [14]. Then they use the graph
neural network (GNN) model to identify the provenance.

In the past decade, researchers have gradually extracted more
complex features. However, in comparison with the earlier work
(e.g., Origin), the performance improvement is not significant. In-
tuitively, we raise a hypothesize that the complex features from
control flow and assembly instructions have limited correlation
with provenance. However, the byte sequences may have the high-
est correlation with the provenance.

8 CONCLUSION
In this paper, we propose BinProv, an end-to-end compilation prove-
nance identification framework. BinProv leverages a BERT-based
embedding model to learn the contextual semantics in binary code.
The only feature used in BinProv is byte sequences, which can be
directly extracted from binary code. BinProv is capable of achieving
very high accuracy for identifying the compiler and optimization
level for binary code, strongly supporting our stance that the disas-
sembler is not indispensable in provenance identification. We can
therefore infer the optimization level more accurately. The accurate
identification of high optimization levels (O2/O3) is valuable for
discovering the complex binary constructs due to optimization, as it
can provide guidelines for other binary analysis tasks in fine granu-
larity. The provenance at the function or binary level is determined
by the majority voting of the byte sequences from the same func-
tion or binary. BinProv achieves 96.85% and 99.8% accuracy at the
function and binary levels, respectively, outperforming existing ap-
proaches. BinProv is trained with the pre-training and fine-tuning
strategies based on the transfer learning. The pre-trained BERT-
based embedding model provides a basic understanding of binary
semantics. BinProv then can be fine-tuned for many other tasks,
such as identifying the compiler helper function. Furthermore, Bin-
Prov benefits the binary code similarity detection by classifying
the provenance of the query and target function.

ACKNOWLEDGMENTS
We thank all anonymous reviewers for their valuable comments.
This work was supported in part by ARO Grant W56KGU-20-C-
0008, NSF Grant CNS-2007153, the Commonwealth Cyber Initiative,
and NSFC Grant 62132011.

REFERENCES
[1] Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia Slowinska, and Herbert

Bos. 2016. An in-depth analysis of disassembly on full-scale x86/x64 binaries.
In 25th USENIX Security Symposium (USENIX Security 16). USENIX Association,
USA, 583–600.

[2] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David Brumley.
2014. BYTEWEIGHT: Learning to recognize functions in binary code. In 23rd

USENIX Security Symposium (USENIX Security 14). USENIX Association, USA,
845–860.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in
Neural Information Processing Systems, Vol. 33. Curran Associates, Inc., USA,
1877–1901.

[4] Clang Team. 2020. clang - the Clang C, C++, and Objective-C compiler.
https://clang.llvm.org/docs/CommandGuide/clang.html.

[5] Ahmad Darki, Michalis Faloutsos, Nael Abu-Ghazaleh, Manu Sridharan, et al.
2019. IDAPro for IoT Malware analysis?. In 12th USENIX Workshop on Cyber
Security Experimentation and Test (CSET 19). USENIX Association, Santa Clara,
CA, 15.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
e-prints abs/1810.04805 (2018), 1–22.

[7] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. 2016. discovRE:
Efficient Cross-Architecture Identification of Bugs in Binary Code. In 23rd Annual
Network and Distributed System Security Symposium (NDSS’16). Internet Society,
San Diego, CA, USA, 1 – 15.

[8] Facebook AI. 2020. RoBERTa implemented in Fairseq. https://github.com/pytor
ch/fairseq/blob/main/examples/roberta/README.md.

[9] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng
Yin. 2016. Scalable graph-based bug search for firmware images. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(CCS’16). Association for Computing Machinery, New York, NY, USA, 480–491.

[10] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. 2018. VulSeeker: A
Semantic Learning Based Vulnerability Seeker for Cross-Platform Binary. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE). Association for Computing Machinery, New York, NY, USA,
896–899.

[11] GCC team. 2018. Options That Control Optimization. https://gcc.gnu.org/onli
nedocs/gcc/Optimize-Options.html.

[12] Hex Rays. 2008. IDA Pro. https://www.hex-rays.com/ida-pro/.
[13] Igor Pavlov. 2021. 7z format. https://www.7-zip.org/7z.html.
[14] Yuede Ji, Lei Cui, and H. Howie Huang. 2021. Vestige: Identifying Binary Code

Provenance for Vulnerability Detection. In Applied Cryptography and Network
Security (ACNS 2021). Springer International Publishing, Cham, 287–310.

[15] Muhui Jiang, Yajin Zhou, Xiapu Luo, Ruoyu Wang, Yang Liu, and Kui Ren. 2020.
An empirical study on arm disassembly tools. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2020).
Association for Computing Machinery, New York, NY, USA, 401–414.

[16] Pascal Junod, Julien Rinaldini, JohanWehrli, and Julie Michielin. 2015. Obfuscator-
LLVM – Software Protection for the Masses. In Proceedings of the IEEE/ACM
1st International Workshop on Software Protection SPRO’15, Brecht Wyseur (Ed.).
IEEE, Firenze, Italy, 3–9.

[17] Dongkwan Kim, Eunsoo Kim, Sang Kil Cha, Sooel Son, and Yongdae Kim. 2022.
Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineer-
ing and Lessons Learned. IEEE Transactions on Software Engineering 1, 23 (2022),
1–23.

[18] Cullen Linn and Saumya Debray. 2003. Obfuscation of executable code to improve
resistance to static disassembly. In Proceedings of the 10th ACM conference on
Computer and communications security (CCS’03). Association for Computing
Machinery, New York, NY, USA, 290–299.

[19] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv e-prints abs/1907.11692
(2019), 1–13.

[20] Luca Massarelli, Giuseppe A Di Luna, Fabio Petroni, Leonardo Querzoni, and
Roberto Baldoni. 2019. Investigating graph embedding neural networks with
unsupervised features extraction for binary analysis. In Proceedings of the 2nd
Workshop on Binary Analysis Research (BAR). Internet Society, San Diego, CA,
USA, 1–11.

[21] MazeGen. 2017. X86 Opcode and Instruction Reference. http://ref.x86asm.net/c
oder64.html#xE9.

[22] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013), 1–12.

[23] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems (NIPS). Curran Associates, Inc.,
USA, 3111–3119.

[24] National Security Agency. 2019. Ghidra. https://ghidra-sre.org/.

https://clang.llvm.org/docs/CommandGuide/clang.html
https://clang.llvm.org/docs/CommandGuide/clang.html
https://github.com/pytorch/fairseq/blob/main/examples/roberta/README.md
https://github.com/pytorch/fairseq/blob/main/examples/roberta/README.md
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://www.hex-rays.com/ida-pro/
https://www.7-zip.org/7z.html
http://ref.x86asm.net/coder64.html##xE9
http://ref.x86asm.net/coder64.html##xE9
https://ghidra-sre.org/

RAID 2022, October 26–28, 2022, Limassol, Cyprus Xu, et al.

[25] Yuhei Otsubo, Akira Otsuka, Mamoru Mimura, Takeshi Sakaki, and Hiroshi
Ukegawa. 2020. o-glassesX: Compiler provenance recovery with attention mech-
anism from a short code fragment. In Proceedings 2020 Workshop on Binary
Analysis Research (BAR). Internet Society, USA, 1–12.

[26] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng,
David Grangier, and Michael Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. arXiv preprint arXiv:1904.01038 (2019), 1–6.

[27] Kexin Pei, Jonas Guan, David Williams King, Junfeng Yang, and Suman Jana.
2021. XDA: Accurate, Robust Disassembly with Transfer Learning. In Proceedings
of the 2021 Network and Distributed System Security Symposium (NDSS). Internet
Society, USA, 1–18.

[28] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP). Association for
Computational Linguistics, Doha, Qatar, 1532–1543.

[29] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word
representations. arXiv preprint arXiv:1802.05365 (2018), 1–15.

[30] Ashkan Rahimian, Paria Shirani, Saed Alrbaee, Lingyu Wang, and Mourad Deb-
babi. 2015. BinComp: A stratified approach to compiler provenance Attribution.
Digital Investigation 14 (2015), S146–S155. https://doi.org/10.1016/j.diin.2015.05.
015 The Proceedings of the Fifteenth Annual DFRWS Conference.

[31] Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li. 2021. Unleashing the
hidden power of compiler optimization on binary code difference: an empirical
study. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI 2021). Association for
Computing Machinery, New York, NY, USA, 142–157.

[32] Nathan Rosenblum, Barton P Miller, and Xiaojin Zhu. 2011. Recovering the
toolchain provenance of binary code. In Proceedings of the 2011 International Sym-
posium on Software Testing and Analysis (ISSTA’11). Association for Computing
Machinery, New York, NY, USA, 100–110.

[33] Nathan E Rosenblum, Barton P Miller, and Xiaojin Zhu. 2010. Extracting
compiler provenance from program binaries. In Proceedings of the 9th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engi-
neering (PASTE’10). Association for Computing Machinery, New York, NY, USA,
21–28.

[34] Nathan E Rosenblum, Xiaojin Zhu, Barton P Miller, and Karen Hunt. 2008. Learn-
ing to Analyze Binary Computer Code.. In Proceedings of the 23rd national confer-
ence on Artificial intelligence (AAAI’08). AAAI Press, Chicago, IL, USA, 798–804.

[35] Sri Shaila, Ahmad Darki, Michalis Faloutsos, Nael Abu-Ghazaleh, and Manu
Sridharan. 2021. DisCo: Combining Disassemblers for Improved Performance.
In 24th International Symposium on Research in Attacks, Intrusions and Defenses
(RAID’21). Association for Computing Machinery, New York, NY, USA, 148–161.

[36] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
et al. 2016. Sok:(state of) the art of war: Offensive techniques in binary analysis.
In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, USA, 138–157.

[37] The Algorithms. 2021. Set of algorithms implemented in C. https://thealgorit
hms.github.io/c.

[38] UCSB. 2016. Angr. http://angr.io/.
[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (NIPS 2017). Curran Associates, Inc., USA, 6000–6010.

[40] Wikipedia contributors. 2021. Executable and Linkable Format — Wikipedia.
https://en.wikipedia.org/w/index.php?title=Executable_and_Linkable_Forma
t&oldid=1047842416.

[41] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural network-based graph embedding for cross-platform binary code similarity
detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS’17). Association for Computing Machinery, New
York, NY, USA, 363–376.

https://doi.org/10.1016/j.diin.2015.05.015
https://doi.org/10.1016/j.diin.2015.05.015
https://thealgorithms.github.io/c
https://thealgorithms.github.io/c
http://angr.io/
https://en.wikipedia.org/w/index.php?title=Executable_and_Linkable_Format&oldid=1047842416
https://en.wikipedia.org/w/index.php?title=Executable_and_Linkable_Format&oldid=1047842416

	Abstract
	1 Introduction
	2 Preliminary Analysis and Motivation
	2.1 Code Variance from Compilation
	2.2 Error Propagation in Reverse Engineering
	2.3 Optimization Levels in Real-world Projects

	3 Design of BinProv
	3.1 Input Pre-pocessing
	3.2 Embedding Generation
	3.3 Provenance Classification of Byte Sequence
	3.4 Joint Classification of Function and Binary

	4 Implementation
	4.1 BinProv Implementation
	4.2 Experiment Settings

	5 Experimental Results
	5.1 Accuracy of Provenance Identification
	5.2 Impacts of Model Components
	5.3 Case Study I: Compiler Helper Function Detection
	5.4 Case Study II: Binary Similarity Detection

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

