
DISPATCH: Unraveling Security Patches from Entangled Code Changes

Shiyu Sun∗

George Mason University
Yunlong Xing∗

George Mason University
Xinda Wang

University of Texas at Dallas

Shu Wang
Palo Alto Networks, Inc.

Qi Li
Tsinghua University

Kun Sun
George Mason University

Abstract

Security patches are crucial for preserving the integrity, confi-
dentiality, and availability of computing resources. However,
their deployment can be significantly postponed when in-
tertwined with non-security patches. Existing code change
decomposition methods are primarily designed for code re-
view, focusing on connecting related parts. However, they
often include irrelevant statements in a bloated security patch,
complicating security patch detection, verification, and de-
ployment. In this paper, we develop a patch decomposition
system named DISPATCH for unraveling individual security
patches from entangled code changes. We first introduce a
graph representation named PatchGraph to capture the fine-
grained code modifications by retaining changed syntax and
dependency. Next, we perform a two-stage patch dependency
analysis to group the changed statements addressing the same
vulnerability into individual security patches. The first stage
focuses on the statement level, where boundaries are defined
to exclude unrelated statements. The second stage analyzes
the unvisited dependencies, ensuring the patch’s applicability
by maintaining syntactic correctness and function complete-
ness. In the evaluation across four popular software reposito-
ries (i.e., OpenSSL, Linux Kernel, ImageMagick, and Nginx),
DISPATCH can unravel individual security patches from en-
tangled ones with over 91.9% recall, outperforming existing
methods by at least 20% in accuracy.

1 Introduction

A software patch is a piece of code changes to update or
fix issues in a computer program or system. These issues
include security vulnerabilities, implementation bugs, per-
formance enhancements, and compatibility improvements.
Security patches are the critical updates addressing software
vulnerabilities to maintain the integrity, confidentiality, and
availability of computing resources [15]. Prompt adoption of

∗These authors contributed equally to this work.

these patches can significantly bolster overall security, safe-
guarding against data breaches and cyber-attacks. It is best
practice to keep each patch focused on a specific purpose,
thereby facilitating its understanding, testing, and deployment.

However, in practice, security patches are typically entan-
gled with other patches. Based on the research across eight
popular repositories [40], 11%–39% of security patches are
intricately entangled with non-fixing changes. Moreover, we
randomly sampled 500 security patches from NVD [7], 34.6%
(173/500) of them (e.g., CVE-2019-13223 [12] and CVE-
2019-11338 [13]) are entangled with at least one security
patch or non-security patch. Directly applying these entan-
gled patches may introduce unforeseen bugs or regressions,
increasing the maintenance overhead due to the heightened
complexity of testing and verification. Moreover, these entan-
gled patches pose significant challenges for organizations by
hindering their ability to prioritize, verify the efficacy, and
ensure the compatibility of security updates. Consequently,
this hampers the prompt securing of systems and prolongs
exposure to known vulnerabilities. Therefore, it is vital to iso-
late and comprehend the impact of each security patch from
the entangled patches.

Several efforts have been made to unravel entangled
patches. With various types of program representations be-
ing extracted to cover syntactic structure, control flow, and
data dependencies in the code changes, different clustering
approaches, including heuristic-based solutions [20, 25, 27,
29, 30, 48, 50], slicing-based solutions [25, 39, 56], and graph
clustering-based solutions [18, 22, 24, 32, 41, 44, 47, 51] are
performed to cluster related statements into separate groups.
However, since the main objective of existing solutions is to
facilitate code review, they face two challenges when unrav-
eling security patches from entangled ones. First, it is prone
to include irrelevant statements in a security patch. When a
security patch has data dependencies with other non-security
patches, existing solutions often mistakenly treat such inter-
twined updates as a single patch. It will unnecessarily increase
the efforts to test the bloated security patch. Second, it cannot
guarantee the completeness of an individual security patch,



potentially leaving parts of the patch in another cluster. This
incompleteness can result in two problems: (1) the security
patch may fail to compile, and (2) even if it compiles, it may
not fully address the target vulnerability. Therefore, it re-
mains a challenge to correctly and accurately unravel security
patches from the entangled ones.

In this paper, we propose a patch decomposition system
named DISPATCH to unravel individual security patches from
entangled code changes. Our work is motivated by the ob-
servation that existing approaches [22, 32, 47, 51, 56] only
preserve the deleted/added syntax in the patch representation
while neglecting the updated statements, which could provide
more essential information. We consider the updated ones by
identifying what has been changed and how those changes
are made (e.g., expanding the boundary of if conditions), and
grouping changes with the same purpose. We first develop a
graph-based patch representation called PatchGraph to cap-
ture the fine-grain syntax and dependency modification, i.e.,
diff behaviors, serving as the prerequisite for individual patch
generation. Then, we conduct a two-stage patch dependency
analysis to determine the scope of individual patches and sep-
arate security patches from the mingled ones. Different from
traditional dependency analysis [51, 56] that relies on con-
trol/data dependency and call relations, we focus on the diff
behaviors, changes over control/data dependency, and the call
relation modifications. Firstly, we conduct a statement depen-
dency analysis to cluster modified statements into the patch
segments without irrelevant changes. Secondly, we perform
segment dependency analysis to generate individual security
patches by utilizing the relationships among patch segments.

Given an entangled patch, we develop PatchGraph to rep-
resent the fine-grained changes (e.g., deleted unused variable,
new function call, or update return status), which are called
diff behavior. We first distinguish the changed statements into
three modification types, i.e., deleted/added/updated, and then
identify the deleted/added identifiers (e.g., variable, function,
and return status) from the deleted or added statements and
compare the fine-grained tokens in updated statements to re-
tain the modified components and discard the unchanged ones.
By doing so, we can successfully constrain the diff behavior
to the modified syntax and corresponding changed data de-
pendency. Finally, we construct PatchGraph by overlaying the
diff behaviors on classic program dependencies (i.e., CDG,
DDG, and call graph).

To ensure that only modification-dependent statements are
grouped, we conduct a patch statement-level dependency anal-
ysis to refine the scope of each patch segment. We first per-
form a diff behavior based slicing to collect the statements
connected by the same type of diff behavior with the same en-
tity (e.g., variable, function, return value). Then, we introduce
the pattern-guided slicing to gather the statements resolving
the same concern. These patterns1 are extracted from the pub-

1These patterns are summarized manually by three students, each with
more than three years of experience in software security.

lic patch dataset [7, 53] across more than 300 popular GitHub
repositories and are composed of anchor nodes to start the
slicing, slicing direction with termination criteria to stop the
slicing, and security attribute indicators to suggest the secu-
rity patches segments. Thus, we can keep only the relevant
statements to one security patch.

After obtaining the patch segments, we conduct a segment-
level dependency analysis that further merges dependent patch
segments into individual patches to ensure their grammar cor-
rectness and functionality completeness. It contains three
phases, namely, determining whether to keep the intraproce-
dural dependencies to avoid using the undefined variables,
resolving the interprocedural call dependencies to seek the
function declaration and implementation, and grouping simi-
lar segments to ensure one concern can be resolved entirely.
Finally, when an individual patch contains both a security
patch segment and a non-security patch segment, we follow
pre-defined criteria to decide if it should be considered as an
individual security patch. For instance, if a security patch seg-
ment is to fix the vulnerability introduced by a non-security
patch segment (e.g., adding a new feature), we treat it as an
individual non-security patch.

We implement a prototype of DISPATCH and evaluate its
decomposition correctness with four popular repositories, i.e.,
OpenSSL, Linux Kernel, ImageMagick, and Nginx. Their
repository sizes span from 84.5MB to 6.71GB. DISPATCH
can successfully unravel 91.9% of individual security patches
from entangled patches. We also compare with state-of-the-
art (SOTA) approaches, including SPatch [36] (a slicing-
based approach), GPT-4 [16] (an LLM-based approach), and
UTANGO [32] (a GNN-based approach). The experimen-
tal results show that DISPATCH outperforms all the existing
methods, with an accuracy improvement of at least 20%, and
the results also reveal that the proposed patterns can be gener-
alized to different types of applications.

In summary, we make the following contributions:
• We design a patch untangling system to unravel individ-

ual security patches from entangled ones.
• We propose a new graph-based patch representation to

capture the modified syntax and dependencies between
pre-patch and post-patch code.

• We develop a constrained slicing method to refine the
scope of individual patches.

• We implement a prototype of DISPATCH and the exper-
imental results show its effectiveness in disentangling
security patches.

2 Preliminaries

2.1 Entangled Patches

A patch is a software component that, when installed, directly
modifies files or device settings related to a different software
component [9]. A patch can be a GitHub commit or a set of



code differences between two versions of software generated
by the diff command in Unix-like operating systems. Ideally,
a patch should focus on resolving a single concern, e.g., a bug
fix, feature update, or maintenance. However, in the real world,
a patch may involve multiple activities to address different
concerns [40], and we call it as an entangled patch. Listing 1
shows an entangled patch that is composed of two patches,
namely, a non-security patch (Line 4, Lines 7-8, and Line 13)
to add a new user profile attribute and a security patch (Lines
9-10) to fix a Null Pointer Dereference bug.

1 typedef struct{
2 char* name;
3 int age;
4 + char* email;
5 } UserProfile;
6 @@ void processUserProfile(UserProfile* userProfile,
7 - char* newName, int newAge){
8 + char* newName, int newAge, char* newEmail){
9 + if (userProfile == NULL)

10 + return;
11 userProfile->name = newName;
12 userProfile->age = newAge;
13 + userProfile->email = newEmail;
14 print("Updated user profile\n");

Listing 1: Security patch entangled with non-security patch.

However, due to the update of the function signature in
the non-security patch, users may deny the entire patch for
version compatibility reasons, hindering the propagation of
the security patch that can be applied separately from the
non-security patch. We analyze 339 closed pull requests in
OpenSSL, consisting of 200 randomly selected unmerged and
all 139 merged requests. Of these, 221 involve C code, with
90 (40.7%) identified as entangled. Among the 90 entangled
patches, 63 (70%) pull requests were not merged, while only
27 (30%) were merged. This highlights the challenges in
adopting entangled patches. Detailed statistics from the case
study are provided in Appendix A.

To assist users in understanding the composition of the
entangled patches and determining what part of a patch to
apply, it is critical to unravel individual patches from entan-
gled patches. In this paper, we refer individual patches to the
patches that resolve one single concern and can be separately
applied to the target software.

2.2 Program Dependencies

Program dependencies play a crucial role in understanding
the code syntax, execution logic, and code semantics. There
are three primary types of program dependencies: data de-
pendency, control dependency, and call dependency. Data
dependency in a program occurs when a program statement
refers to the data of a preceding statement, and control de-
pendency represents a situation in which the execution of a
program statement depends on the outcome of a preceding
control statement. Call dependency indicates relationships
between functions or procedures. Program dependencies fo-
cus on grasping the information in a single version of code.

To better understand the patch code changes that involve two
versions of code, it is critical to extend program dependency
information to cover the differences between the two versions.

In this paper, we introduce a new type of program depen-
dency, named diff behavior, to record the deleted/added/up-
dated behaviors in code changes. A detailed description will
be given in § 5. We integrate the diff behaviors with tradi-
tional control dependency graph (CDG), data dependency
graph (DDG), and call graph (CG) to provide details on mod-
ified syntax (e.g., new variable declarations and altered vari-
able definitions) and updated dependencies (e.g., new data
linkages, altered conditional control dependencies, revised
variable assignments, and updated function utilization).

2.3 Program Slicing

Program slicing is a technique in program analysis to sim-
plify the understanding and analysis of large and complex
programs by focusing only on the related portions [54] (i.e.,
slices). Slicing starts from a variable of a program point and
traverses the program along dependency edges (e.g., data de-
pendency, control dependency, or both) until the specified
criteria (e.g., the number of hops, and the end) are met. We
develop a constrained program slicing technique that spec-
ifies the beginning point and criteria for retaining relevant
statements and eliminating irrelevant ones. The details can be
found in § 6.2.

3 A Motivating Example

We use an example in Figure 1 to demonstrate how DIS-
PATCH decomposes individual security patches entangled
with non-security ones. Unlike existing methods [36, 44] that
coarsely analyze patches at the statement level, we adopt a
fine-grained approach by analyzing changes at the dependency
level and token level by categorizing them as deleted, added,
or updated. Furthermore, unlike decomposition methods de-
signed for code review, which aim to reveal the dependencies
and group statements as long as they have dependencies, we
explicitly define boundaries for individual patches that can
be applied back without breaking the original functionality.
DISPATCH consists of two steps, namely, constructing a new
graph-based patch representation called PatchGraph and con-
ducting dependency analysis to generate individual patches.
Understanding an Entangled Patch. Figure 1(a) shows an
entangled patch that is composed of a security patch (Lines
18-21) and a non-security patch (Lines 4-6, 10-15) [43]. From
Line 3 to Line 5, the pre-patch allocates two memory spaces
and then checks failures for both memory allocations. How-
ever, if the first allocation fails, there is no need to conduct
the second checking. Therefore, the post-patch optimizes the
memory allocation by allocating em (Line 11) after the suc-
cessful allocation of db (Line 6). Instead of allocating em using
OPENSSL_malloc (Line 4) and setting it to zero with memset



(a) An entangled OpenSSL patch

  1 int RSA_padding_check_OAEP_mgf1(…){
  2   …
  3   db = OPENSSL_malloc(dblen);
  4 - em = OPENSSL_malloc(num);
  5 - if(db == NULL || em == NULL){
  6 + if(db == NULL){
  7      RSAerr(ERR_R_MALLOC_FAILURE);
  8      goto cleanup;
  9   }
 10 - memset(em, 0, num);
 11 + em = OPENSSL_zalloc(num);
 12 + if(em == NULL){
 13 +    RSAerr(ERR_R_MALLOC_FAILURE);
 14 +    goto cleanup;
 15 + }
 16   …
 17   cleanup:
 18 - OPENSSL_free(db);
 19 - OPENSSL_free(em);
 20 + OPENSSL_clear_free(db, dblen);
 21 + OPENSSL_clear_free(em, num);
 22 }

34 6

5

10

18

19

11

12

20

21

em

em

control dependency data dependency diff behavior

(b) PatchGraph with diff behaviors

① Diff Behavior Guided Slicing

② Pattern Guided Slicing

(c) Patch dependency analysis

5 6 12

4 10 11

Statement Level Analysis Segment Level Analysis

18 19 20 21

security candidate

s1

s2

s3

s4

8

14

Diff Behavior 1: variable assigment

Diff Behavior 2: conditional check

Diff Behavior 3: free function usage

4

10
11

5
6

12

18

19

20

21

Non-security Patch

4

65

10 11

12

13 1411 12

Security Patch

18 19 20 21

s1+s2+s4 

s3

11 12 13 14

Merge

Figure 1: A motivating example of separating a security patch from a non-security patch in an entangled patch.

(Line 10) in the pre-patch, the post-patch accomplishes these
two steps by OPENSSL_zalloc (Line 11). The above changes
belong to a non-security patch since it only optimizes the
program structure without fixing any vulnerability. From Line
18 to Line 21, the function OPENSSL_free is replaced with
OPENSSL_clear_free that clears the memory containing sen-
sitive information before the free operation, indicating a secu-
rity patch to prevent memory leakage.

Due to the data dependencies on variable em (i.e., lines
4 and 19, lines 11 and 21), existing data dependency-based
patch decomposition solutions [22, 32, 47, 51, 56] consider
all changed code in Figure 1(a) as a single patch. However,
the value of em in Line 21 is independent of Line 11 since
no matter whether Line 11 has been applied, the value of em
stays unchanged. Therefore, we should consider them as two
individual patches.

Representing a Patch with PatchGraph. To capture what
has been modified and how the modifications happen, we
introduce diff behavior and integrate the diff behavior with
traditional program dependency graphs (i.e., DDG, and CDG)
as PatchGraph. As shown in Figure 1(b), the left part is the
CDG and DDG of the patch (simplified due to space limita-
tion). On the right part of Figure 1(b), three additional diff
behaviors are identified for a given patch: (1) changing the
memory allocation functions for em in Lines 4, 10, and 11,
(2) splitting the conditional statement of Line 5 into two if

checks in Lines 6 and 12, and (3) updating the functions be-
tween Lines 18 and 20, and Lines 19 and 21, where a more
secure function replaces the previous one. By combining the
pre- and post-patch’s CDG, DDG, and diff behaviors, Patch-
Graph provides a comprehensive view of patch code changes
to better understand the purpose of the changed code.

Unraveling a Patch with Dependency Analysis. Given the
PatchGraph, we propose a two-stage patch dependency analy-
sis to group the modification-dependent changes as individual
patches. There is a statement-level analysis that performs slic-
ing with the predefined criteria to determine the scope of each

patch segment and a segment-level analysis that analyzes the
unvisited dependencies among patch segments and retains the
necessary ones to ensure grammar correctness and function
completeness.
Statement Dependency Analysis. It performs both diff behav-
ior guided slicing and pattern guided slicing over the code
statements. First, three types of diff behaviors are used to
guide the slicing. The slicing results are three segments (i.e.,
s1, s2, and s3) as shown in Figure 1(c) 1 . Among them, we
consider s3 (Lines 18-21) as a security patch candidate since
it includes a security function replacement. Then, we slice
the PatchGraph guided by patch patterns derived from em-
pirical knowledge, including anchor nodes, slicing directions
with termination criteria, and security attribute indicators. As
demonstrated in Figure 1(c) 2 , the anchor nodes are if state-
ments checking exception value (Line 12) with a forward
slicing to obtain error-handling statements (Lines 13 and 14),
and a backward slicing to get the assignment of em (Line 11).
In this way, we obtain the patch segment s4 (Lines 11-14)
and identify it as a security patch candidate due to its com-
plete error-handling process. After the above diff behavior
guided slicing and pattern guided slicing, we obtain four patch
segments (s1-s4), which serve as the basic components for
generating individual patches.
Segment Dependency Analysis. The segment level analysis
re-examines whether the unvisited dependencies across patch
segments need to be preserved to ensure compilation and
grammar correctness. As shown in Figure 1(c), the depen-
dency between s1 and s2 as well as the dependency between
s1 and s4 are essential. The dependencies between s1 and
s3, and s3 and s4 are deemed dispensable as the values of em
and db remain unchanged regardless of these dependencies.
After merging the essential dependent segments, we obtain
two individual patches, i.e., s1+s2+s4 and s3. Then, we fur-
ther check the security patch candidates contained in each
individual patch to decide if an individual patch is a secu-
rity patch. Since the added em check and error handling in
Lines 11-14 have already been performed in Line 5 of the



Entangled Patch PatchGraph Patch Segment Individual Patch

Deleted Added Updated Security Non-security

Split View
1
2
3
4
5

7
6

Patch Dependency Analysis

Figure 2: Overview of DISPATCH: ➀ PatchGraph construc-
tion; ➁ statement dependency analysis; ➂ segment depen-
dency analysis.

pre-patch, s1+s2+s4 (containing both Line 5 and Lines 11–14)
does not actually introduce a new security check. Therefore,
we consider it a non-security patch. Finally, we decompose
the original entangled patch into two individual patches: one
non-security patch spanning Lines 4 to 15 and one security
patch covering Lines 18 to 21, as shown in Figure 1(c).

4 System Overview

DISPATCH decomposes entangled security patches into in-
dividual patches, and the overall workflow of DISPATCH is
illustrated in Figure 2. Given the version diffs, OSS patch,
or Git commit, DISPATCH begins by extracting the modified
syntax and dependencies (i.e., diff behaviors) and represents
them with a graph representation (i.e., PatchGraph). Next,
we perform patch dependency analysis to group the modified
statements that need to be applied together (i.e., individual
parch). The patch dependency analysis is conducted at two
different levels: (1) the statement level, where dependent mod-
ifications are grouped into patch segments, and (2) the seg-
ment level, where dependent patch segments are combined
into individual patches.

4.1 Patch Representation with PatchGraph

Different from representing the classical program graph rep-
resentation (e.g., AST and PDG), which focuses on recording
the syntax structure and capturing the program dependencies
in one single version of code, the representation of a patch
should be able to capture the changed syntax and dependency
between the two versions. Previous methods [44, 52] directly
merge the pre-patch and post-patch graph representations,
making the graph remain detached, inadequate, and redundant.
For instance, Lines 1 and 2 in Figure 3, despite referring to the
same code line, are not connected by an edge nor marked as
updated. Additionally, while *p remains unchanged, its asso-
ciated dependencies are still maintained. The direct merging
will lead to the failure to highlight fine-grained modifications
and will neglect to distinguish between the changed and un-
changed statements, let alone assist in aggregating changes
that serve the same purpose. To fill this gap, we introduce
diff behavior to describe the actual fine-grained changes and
integrate all diff behaviors as PatchGraph to represent a patch.

4.2 Patch Dependency Analysis
Given the PatchGraph representing an entangled patch, we
obtain individual patches by decomposing the large graph into
smaller subgraphs through patch dependency analysis. Dif-
ferent from classical program dependency analysis [51, 56],
which clusters according to data or control dependencies,
patch dependency analysis treats the diff behavior (i.e., delete,
add, and update syntax and dependency) as predominant de-
pendencies to link the dependent nodes. To achieve this, we
conduct statement-level and patch segment-level analysis.
Patch Statement Dependency Analysis. During the
statement-level dependency analysis, we aim to aggregate
the code changes for the same purpose. Here, how to define
the scope of a modification, specifically where to start the
slicing and when to terminate it, is challenging. For example,
in Figure 1 (a), although Line 19 is data-dependent on Line 10,
they belong to two individual patches, requiring us to define
the scope for each. To solve it, we propose a new constrained
slicing mechanism named pattern-guided slicing to group the
modification-dependent statement as patch segments. We em-
pirically summarize a set of security and non-security patch
patterns, which are used to initiate the slicing with the anchor
nodes, perform program slicing guided and terminated by the
constraints to form patch segments, and identify the security
patch segment candidates with a security-attribute indicator.
In this way, the entangled patch is split into multiple patch
segments, and each patch segment resolves one concern (e.g.,
initialize/reassign a variable, and update function usage).
Patch Segment Dependency Analysis. To guarantee each
patch segment can be individually applied (grammar correct-
ness) without disrupting the intended functionalities (func-
tionality correctness), we further analyze the dependencies
among the sliced patch segments and merge segments with
essential dependencies to generate final individual patches.
To further confirm if the individual patch is a security one or
not, we analyze the patch segments that constitute an individ-
ual patch. If the individual patch only has one type of patch
segment, the security characteristic aligns with the segment’s
label. If the individual patch consists of security patch seg-
ments and non-security patch segments simultaneously, we
conduct further analysis to check if it is a security patch.

5 Patch Representation
As shown in Figure 3, we construct PatchGraph by overlaying
the essential diff behaviors on traditional program dependen-
cies. First, we generate traditional program graph representa-
tion, i.e., Abstract Syntax Tree (AST), CDG, DDG, and call
graph (CG). Among them, pre-patch and post-patch ASTs are
for locating the deleted/added/updated statements and compo-
nents, e.g., variable, function, value, and string. Pre-patch and
post-patch CDGs, DDGs, and CGs are used to recognize mod-
ified dependencies. Afterwards, we identify diff behaviors at
the statement level. By integrating diff behaviors on top of



Entangled Patch Diff BehaviorAST Statements Components PatchGraph

3

4

7

8

10

1

3

5

2

7

9

6

pre-/post-patch statement

Diff Behavior

CDG

DDG

Deleted CDG

Deleted DDG

Added CDG

deleted/added/updated component

8:9; clear_free; free; pclear_free; free

1

2
4
5

8
9

10

1:2; declaration; q

4; assignment; q

5; check; (p==NULL)

10; free; q

1: declaration; (int; p; q)

2: declaration; (int; p)

4: assignment; (p; q)

5: branch; (p; NULL; -1)

8: function; (free; p)

9: function; (clear_free; p)

10: function; (free; q)

flatten AST

declaration: q

assignment: q

p==NULL

function: free

deleted/added/updated diff behaviorsupdated statements

  1 - int *p, *q;
  2 + int *p;
  3   *p = malloc(num);
  4 - *q = *p;
  5 + if(p == NULL)
  6 +    return -1;
  7   use(p);
  8 - free(p);
  9 + clear_free(p);
 10 - free(q);

Figure 3: The workflow of PatchGraph construction.

traditional dependencies, we have PatchGraph to precisely
represent a patch file.

5.1 Diff Behavior Indentification

We introduce the diff behavior to represent the fine-grained
code changes of a patch. The diff behavior describes the mod-
ification details between pre-patch and post-patch statements.
There are three types of modifications and we use them to
describe changed statements and the tokens respectively.
Deleted. Deleted statements refer to statements that exist in
pre-patch but are absent in the post-patch. The tokens in a
deleted statement are considered as deleted components.
Added. Added statements are present in the post-patch but
absent in the pre-patch. The tokens in an added statement are
considered as added components.
Updated. These statements are present in both pre-patch
and post-patch nodes, albeit with some variations. In a patch,
updated statements typically come in pairs (except some state-
ments are broken into several lines or several statements have
been merged as one), one each from the pre-patch and post-
patch, and we introduce the diff behavior edges to link these
pairs, with updated components serving as an attribute. The
components in an updated statement need to be compared
to determine if they have changed. If changed, they will be
further tagged with deleted, added, or updated type.

To capture diff behaviors, we first identify the delet-
ed/added/updated statements and then recognize the modified
tokens to locate the fine-grained actual updates. Then, the
diff behaviors are extracted and recorded using node or edge
attributes for PatchGraph construction.
Identifying Deleted/Added/Updated Statements. We learn
from the GitHub split view [14] to identify deleted, added,
and updated statements in a patch. As shown in the split view
(as shown in Figure 2), the deleted statements are only shown
in red on the left side and there are no green statements on the
right side; the added statements are only shown in green on
the right side and there are no red statements on the left side;
the updated statements are the statements that have both red
deletions on the left side and green additions on the right side.
We first identify each hunk using the hunk header (e.g., @@
-7 +7 @@ void func_name(int a)) and determine the deleted

and added statements within the hunk by recognizing the “-”
and “+” prefixes at the beginning of each line. Next, we com-
pare the added and deleted statements within each hunk. If
an added statement and a deleted statement share the same
statement type (e.g., function declaration) and have variables
in common (e.g., function parameters for a function call state-
ment or the left-hand side variable for an assignment state-
ment), we pair them as updated statements. Moreover, we also
consider the situation where one statement has been broken
into multiple ones (e.g., one if check has been broken into
two) and multiple statements have been merged into one (e.g.,
multiple same type declaration statements have merged into
one line). According to these, we can easily recognize deleted,
added, and updated statements for the given patch.

Identifying Deleted/Added/Updated Components. Given
the deleted/added/updated statements, we recognize fine-
grained components. We identify all the necessary elements
in deleted statements (e.g., parameters, variables, functions,
conditions, branches, loops, and return values) as deleted com-
ponents. Similarly, we retrieve added components. In updated
statements, we first compare tokens between paired state-
ments to eliminate unchanged tokens. Then, we identify the
components exclusive to pre-patch statements as deleted, ones
only in post-patch statements as added, and ones in both pre-
patch and post-patch statements as updated.

Identifying Diff Behaviors. We describe the deleted
code behaviors according to the component type and
the corresponding deleted tokens by utilizing a 3-tuple
(modification type, token type, token details), e.g., (deleted,
assignment, *q). Similarly, we describe the added behaviors.
For the updated behaviors, besides the type and details of the
component, we also need the identifier of the two statements
to complete the behavior. We adopt the 4-tuple (modification
type, token type, paired statement id, token details) to describe
the above behaviors. For example, as shown in Figure 3, the
diff behavior between Lines 8 and 9 are represented as (up-
dated, function, pre_8: post_9, free: clear_free). The captured
diff behaviors represent the properties of nodes and edges in
the PatchGraph.



PatchGraph

Patch Segment Slicer Individual Patch Integrator

Patch SegmentsAnchor Node Selection Constrained Slicing Intraprocedural Analysis Interprocedural Analysis Similar Pattern Individual Patches

nodes in one funtion individual security patch required procedure

Figure 4: The workflow of individual patch generation.

5.2 PatchGraph Construction

To model patch code changes, we integrate the diff behaviors
and classic program representations (i.e., CDGs, DDGs, and
CGs) into a joint structure named PatchGraph. To construct
PatchGraph, we first generate CDG, DDG, and CG for pre-
patch and post-patch code. Since each node in CDG, DDG,
and CG is a statement and the edge shows dependencies
between two statement nodes (i.e., control dependency, data
dependency, and caller-callee relationship), we can merge
them into one graph and add the diff behavior on top of it.
We use (V,E) to describe the PatchGraph where V is a set of
nodes and E is a set of directed edges.
Nodes in PatchGraph. The nodes in PatchGraph are state-
ments in the patch file and we represent the set of nodes V
using a 5-tuple (id, version, code, type, property). We parse
the patch file to get the nodes represented with the line num-
ber in pre-patch and post-patch as node id and node version
(version ∈ {pre-patch, post-patch}). Then, we pair the state-
ments to recognize the node type of each statement: formally,
type∈{deleted, added, updated, unchanged}. Given the state-
ment type, we extract the node property from the tokens. If
the node type is updated, we add the paired node id to the
property; if the node type is deleted/added, we add the mod-
ified content to the property. For example, one of the nodes
in Figure 3 can be described as (pre-8, pre-patch, free(p);,
updated, post-9:clear_free(p);).
Edges in PatchGraph. The set of directed edges E is repre-
sented by a 6-tuple (id1, id2, version, modification type, edge
type, property), where id1 and id2 represent the ids of start
and end nodes. The verison reflects where the node exists,
i.e., the pre-patch, post-patch, or both. There are four types of
edges in PatchGraph: (1) edges in pre-patch CDG and post-
patch CDG, (2) edges for the deleted/added/updated variables
in DDG, (3) edges in pre-patch CG and post-patch CG, and
(4) edges connecting updated statement pairs introduced by
diff behavior. We use the modification type, edge type, and
the property together to record these fine-grained modifica-
tions, where modi f ication type ∈ {deleted, added, updated,
unchanged} and edge type ∈ {CDG, DDG, CG, diff behav-
ior}. The property records the CDG edges, the defined/used
variable for DDG edges, the callee function for CG edges, or
the modified token type and token details identified by diff
behavior. For example, the edge between Line 8 and Line 9
in Figure 3 is described as (pre-8, post-9, both, updated, diff
behavior, function | free:clear_free).

6 Individual Patch Generation

Given the detailed changes represented in PatchGraph, we
conduct program slicing to split the entangled patch into mul-
tiple individual patches. By empirically proposing a set of
patch patterns, which map the modified syntax to modifica-
tion purpose, to guide the slicing, we obtain patch segments
where each one resolves one issue. Moreover, to guarantee
the completeness of each individual patch, we further analyze
the relationship among patch segments to merge modification-
dependent patch segments and guarantee they can by applied
back. The workflow is shown in Figure 4.

6.1 Patch Pattern Discovery

To determine the scope of each individual patch, we first em-
pirically summarize a set of patch patterns that can help locate
the start and termination statement of each slice, as well as
provide an interpretation of whether a slice performs a secu-
rity fix. To this end, we manually analyze 5k security patches
identified in NVD [7] and PatchDB [53] to summarize the
security patterns upon diff behaviors. Then, we randomly se-
lect 5k non-security commits in Github for non-security patch
patterns. After cross-verification by three doctoral students,
each with more than three years of experience in software
security, we summarize 12 types of security patch patterns
and three types of non-security patch patterns. In this work,
we focus on C/C++ since they are the languages with the
highest number of security issues [31]. Note that the pattern
set is extensible, and users can define new patterns according
to specific application scenarios.
Patch Pattern Structure. To represent each individual patch
and provide insight into its security characteristics, we intro-
duce a new structure consisting of the anchor node, slicing di-
rection with termination criteria, and security attribute indica-
tor. Specifically, anchor nodes serve as the starting statements
to initiate the slicing. The slicing direction with termination
criteria determines which statements will be associated with
the anchor node. If there are no specified termination criteria,
we do not conduct slicing in that direction. Such a slicing
result is a set of statements completing one purpose. We name
it patch segment. To determine if a patch segment is security-
related, we further define the security attribute indicator. The
slices that fail to match the security attribute indicator will be
labeled as non-security patch segments. The patterns are repre-
sented as a 4-tuple: (anchor node, forward slicing termination



criteria, backward slicing criteria, security indicator). The
anchor node and security indicator specify the statement type
and associated keywords, while the termination criteria define
the selected dependency and the termination statement type.
For example, Lines 5 and 6 in Figure 3 illustrate a pattern
instance for Add Sanity Check. The anchor node corresponds
to conditional statements with the keyword if. Forward slic-
ing is constrained by control dependencies and terminates at
the end of the if check. Backward slicing is limited to iden-
tifying updates to variables within the if check. The security
indicator validates the presence of specific keywords in the
conditional statement, such as NULL, not NULL, MAX, MIN,
other invalid or boundary values, or negative return status.
Security Patch Pattern. We summarize 12 security patterns
in four categories, i.e., sanity check, function operation, vari-
able operation, and return statement, and represent these pat-
terns with the above structure. The summary can be found in
Table 1 and the detailed description in Appendix B.1.
Non-security Patch Pattern. To distinguish security and
non-security patches, we summarize non-security patterns,
including debugging, code refactoring, and new features. The
summary can be found in Table 1 and the detailed description
in Appendix B.2.

6.2 Patch Statement Dependency Analysis
Then, we conduct customized program slicing to produce
patch segments, serving as candidates for individual patches.
This process involves two methods: diff behavior-based clus-
tering to group similar changes and pattern-guided slicing to
collect statements for similar issues.
Diff Behavior Based Clustering. We conduct slicing to group
nodes linked by same diff behavior into a patch segment that
solves one issue. We assess if they are security-related patch
segments by checking if they introduce restricted conditions
or apply more memory management actions, e.g., free() in
s3 of Figure 1.
Slicing Guided by Patch Patterns. According to the sum-
marized patterns, we perform slicing to cluster statements for
individual modification purposes. We start our slicing from
the statements that match the definition of anchor nodes in
our summarized patterns. One slicing from a statement for
a specific pattern is performed at a time. For example, Line
5 in Figure 3 has been identified as an anchor node that be-
longs to the add sanity check pattern since it is an if statement.
For each anchor node, the backward and forward slicing is
performed on specified dependencies until our defined end
condition is met or the start/end of the code is achieved. For
instance, given the anchor node Line 5, we perform forward
slicing to the end of the check body and backward slicing
to locate the new declaration of p. Thus, we get Lines 5 and
6 as a patch segment as p has not been newly defined. The
generated slice (i.e., patch segment) will be labeled as security
or non-security according to our defined security indicators.

To exemplify, Lines 5 and 6 are a security patch segment since
they check the NULL in the conditional statement and return a
negative status, indicating the error-handling process.

6.3 Patch Segment Dependency Analysis
Our final goal is to generate security patches that can fully
solve one issue without disrupting the original functionalities.
To achieve this, DISPATCH further analyzes the dependencies
among patch segments and groups the segments sharing the re-
quired dependencies as individual patches. Then, DISPATCH
confirms if each individual patch is a security patch.

6.3.1 Patch Segment Integrator

To determine if the current segment relies on other segments,
we examine the remaining intraprocedural and interprocedural
dependencies. Also, we conduct a similarity analysis to group
similar patch segments into one patch so that the same issue
can be addressed thoroughly at one time.
Intraprocedural Remaining Dependency Analysis. To
merge the patch segments that have the indispensable data/-
control dependencies, we first focus on the unvisited depen-
dencies within the function. We assess the necessity of unused
CDG and DDG edges from grammatical viewpoints. For CDG
edges, we ensure the nested statements’ completeness, retain-
ing dependencies in nested segments. We include DDG edges
if variables in later patches are newly defined and assigned,
discarding dependencies not in the case.

1 diff --git a/.../v3_purp.c b/.../v3_purp.c
2 +const ASN1_INTEGER *X509_..._serial(X509 *x) {
3 + X509_check_purpose(x, -1, -1);
4 + return(x->akid != NULL? x->akid->serial : NULL);
5 +}
6 diff --git a/.../v3_purp.c b/.../v3_purp.c
7 +const GENERAL_NAMES *X509_..._issuer(X509 *x) {
8 + X509_check_purpose(x, -1, -1);
9 + return(x->akid != NULL? x->akid->issuer : NULL);

10 +}

Listing 2: An example of similarity analysis.

Interprocedural Remaining Dependency Analysis. The
interprocedural analysis aims to complete the patch across
functions and files, like function calls of modified or newly
added functions, which are supposed to be applied together.
To do so, we analyze the relationship between the caller and
the callee. If the callee function is newly added or the callee’s
parameters have changed, we keep the call graph edges be-
tween them to complete the call chain. Moreover, the interpro-
cedural dependency analysis handles the definition and use
of macro, identifying the new macro identifiers and merging
their definitions’ and usages’ patch segments.
Patch Segment Similarity Analysis. Besides the above de-
pendency analysis, we also conduct a similarity analysis to
fill the gap that patch segments may share the same fixing
structure to patch the same type of vulnerabilities without any
call, data, control, or modification dependencies. For instance,



Table 1: The patch patterns deployed in pattern-guided slicing.

Type Category Patterns
Structure

Anchor Nodes Backward Slicing Forward Slicing Security Indicator

Security

Sanity Check
Add Security Check added if check variable def of if checks end of if error handling
Update Security Check updated conditional statement variable def of if checks end of if changed condition

Function

Add Mem Deallocation Func added memory function allocation function -/NULL assignment memory deallocation
Update Mem Management Func updated memory releasing func - - memory releasing
Add Concurrency Control added lock function locked variable definition unlock function unlock function
Update Concurrency Control deleted lock function - unlock function deleted lock function
Function Encapsulation deleted if check - sealed in new func error handling

Variable
Initialize Variable updated variable assignment - - NULL
Enlarge Buffer Size updated pointer declaration - - enlarged buffer size

Statement
Update Return Value updated return statement return value assignment - error status
Enhance Error Handling added goto statement deleted return statement goto content error status
Update Return Type void type in pre- changed type in post- added return stmt error status

Non
Security

Debug Debug added debug function -/deleted debug function - debug function
Refactor Refactor added conditional statements deleted conditional statements end of conditional block same condition
New Feature New Feature function definition - end of function -

in Listing 2, two functions have the total same patch logic
and structure to handle x509 certificates, and they should
be patched together. By calculating the similarity analysis
between the patch segments, the same issues are addressed
thoroughly in one individual patch. To capture such syntac-
tic similarity, we calculate the sequential similarity among
patch segments. The sequential similarity is calculated using
Levenshtein distance [55], which is straightforward and ef-
ficient. We consider two segments as similar pairs when the
sequential similarity is greater than 0.9.

6.3.2 Individual Security Patch Identification

Given the individual patches, if they only contain one type of
patch segment, i.e., security patch segments or non-security
patch segments, we label the individual using the patch seg-
ments’ label. For the remaining individual patches that include
the security patch segment and non-security patch segment
at the same time, we conduct a two-fold analysis. First, if
the security patch candidate is part of a non-security patch
segment, given the fact that the goal of the non-security seg-
ment is to reformat, debug, refactor, or introduce new features,
not specifically to address the security issue, we treat such
an individual patch as non-security. Second, we check if the
functionality of the security patch candidate already exists in
the pre-patch by comparing if they contain the same source
code for conditions in sanity checks. If the conditions in the
security segment already exist in the pre-patch code (e.g., s4
in Figure 1.), we treat the individual patch as a non-security
patch. The remaining individual patches are labeled as indi-
vidual security patches.

7 Evaluation

In this section, we conduct experiments on real-world projects
to answer the following research questions (RQs).
RQ1: What is the accuracy and scalability of DISPATCH to
unravel entangled patches? (§ 7.1)

RQ2: Can DISPATCH outperform baselines? (§ 7.2)
RQ3: How DISPATCH performs when identifying individual
security patches? (§ 7.3)
RQ4: How DISPATCH performs in other software? (§ 7.4)
RQ5: How DISPATCH performs when decomposing sophisti-
cated commits? (§ 7.5)
Experiment Setup. Our experiments are conducted on a ma-
chine with an Intel Core i7 1.8GHz CPU and 16GB of mem-
ory, running Ubuntu 22.04. We use four popular software, i.e.,
OpenSSL (446,747 LOC), Nginx (242,153 LOC), ImageMag-
ick (874,459 LOC), and the Linux Kernel (18,963,973 LOC),
to evaluate the performance of DISPATCH and the coverage
of the extracted patterns.

7.1 Accuracy and Scalability (RQ1)
To evaluate the effectiveness of the proposed system on entan-
gled patch decomposition, we apply DISPATCH on diffs be-
tween every two neighboring letter versions [10] in OpenSSL
1.1.1 because letter version contains more bug fixes and se-
curity patches, and each diff represents an entangled patch
that simultaneously contains multiple entangled security and
non-security patches. However, there are not always 1-to-1
mappings between commit and individual-patch. An individ-
ual patch may consist of multiple commits, and a commit
may contain multiple individual patches. Therefore, we man-
ually identify all the individual patches of all these 23 letter
version diffs as the ground truth. We use the Exact Match
and Accuracy as the evaluation metrics. As the name sug-
gests, exact match refers to the individual patches generated
by DISPATCH that are the same as the ground truth line by
line. The accuracy refers to the percentage of exactly matched
individual patches.
Accuracy. We first use Figure 5 to plot the cumulative dis-
tribution function (CDF) of unraveling accuracy results on
all the neighboring letter version diffs of OpenSSL 1.1.1. We
conduct an ablation study to uncover the contributions intro-
duced by each design of our system, i.e., slicing with patch



Table 2: Ablation study results on patch unraveling in OpenSSL 1.1.1.

Version Groundtruth Traditional Slicing Slicing with Diff Behavior Slicing with Diff Behavior and
Patch Statement Analysis DISPATCH

# IP # GP # EMIP Accuracy # GP # EMIP Accuracy # GP # EMIP Accuracy # GP # EMIP Accuracy
0-a 122 420 38 31.15% 318 50 40.98% 236 80 65.57% 151 102 83.61% (+52.46%)
a-b 113 602 37 32.74% 423 45 39.82% 366 62 54.87% 129 103 91.15% (+58.41%)
b-c 81 977 39 48.15% 532 42 51.85% 135 57 70.37% 94 73 90.12% (+41.97%)
c-d 118 401 35 29.66% 343 47 39.83% 291 80 67.8% 131 108 91.53% (+61.87%)
d-e 114 1760 42 36.84% 947 47 41.23% 175 70 61.4% 125 107 93.86% (+57.02%)
e-f 11 57 2 18.18% 46 2 18.18% 38 4 36.36% 15 9 81.82% (+63.64%)
f-g 16 97 8 50% 46 9 56.25% 38 10 62.5% 20 12 75% (+25%)
g-h 82 221 40 48.78% 195 47 57.32% 176 59 71.95% 89 76 92.68% (+43.9%)
h-i 24 36 10 41.67% 27 12 50% 36 16 66.67% 27 21 87.5% (+45.83%)
i-j 29 34 13 44.83% 31 15 51.72% 39 20 68.97% 32 26 89.66% (+44.83%)
j-k 17 40 8 47.06% 37 9 52.94% 36 10 58.82% 29 15 88.24% (+41.18%)
k-l 72 142 27 37.5% 140 32 44.44% 133 40 55.56% 89 67 93.06% (+55.56%)
l-m 58 86 40 68.97% 77 40 68.97% 73 50 86.21% 66 53 91.38% (+22.41%)
m-n 23 47 13 56.52% 37 16 69.57% 29 18 78.26% 28 19 82.61% (+26.09%)
n-o 22 45 13 59.09% 41 13 59.09% 29 13 59.09% 22 22 100% (+40.91%)
o-p 19 26 10 52.63% 23 10 52.63% 29 13 68.42% 23 15 78.95% (+26.32%)
p-q 5 11 1 20% 9 1 20% 8 2 40% 6 4 80% (+60%)
q-r 33 65 16 48.48% 54 18 54.55% 52 18 54.55% 35 31 93.94% (+45.46%)
r-s 4 14 0 0% 11 0 0% 10 1 25% 3 3 75% (+75%)
s-t 23 36 11 47.83% 33 12 52.17% 30 19 82.61% 27 22 95.65% (+47.82%)
t-u 24 38 6 25% 37 7 29.17% 35 16 66.67% 30 21 87.5% (+62.5%)
u-v 3 7 1 33.33% 7 1 33.33% 6 2 66.67% 3 3 100% (+66.67%)
v-w 12 25 3 25% 18 4 33.33% 16 10 83.33% 14 11 91.67% (+66.67%)
Total 1025 5187 413 40.29% 3432 479 46.73% 2016 670 65.37% 1188 923 90.05% (+49.76%)

# IP is for the number of individual patches; # GP is for the number of generated patches; # EMIP is for the number of exactly matched individual patches.
DISPATCH is slicing with diff behavior, patch statement analysis, and patch segment analysis.

0

20

40

60

80

100

0 20 40 60 80 100

C
D

F
 (

%
)

Unraveling Accuracy (%)

Traditional Slicing (a)
a + Patch Behavior (b)
b + Statement Analysis (c)
DisPatch (c + Segment Analysis)

Figure 5: CDF of unraveling accuracy on OpenSSL 1.1.1.

behavior, patch statement analysis, and patch segment analy-
sis. From the figure, we can see that the unraveling accuracy
for the traditional slicing (based on control and data depen-
dency) ranges from 0% to 68.97%, with the most distributed
under 50%. After adding patch behavior for slicing, the result
is improved, and the best accuracy achieves 69.57%. Then
we additionally adopt patch statement analysis, and the un-
raveling accuracy is in the range of 25% to 86.21%. Finally,
after incorporating the patch segment analysis, DISPATCH
performs the best, with the lowest accuracy of 75% and the
highest accuracy of 100%.

We list the unraveling result on each letter version of
OpenSSL 1.1.1 in Table 2. The first column lists the version
numbers of two consecutive versions of OpenSSL, which
respectively served as the original and patched source code.
The second column reports the number of manually identified
individual patches, serving as the ground truth. The columns
from third to fourteenth show the results of entangled patch
decomposition based on traditional slicing (columns 3-5),
slicing with patch behavior (columns 6-8), slicing with patch

behavior and statement analysis (columns 9-11), and slicing
with patch behavior, statement analysis, and segment analysis
(i.e., DISPATCH) (columns 12-14).

From Table 2, we can see that among 1025 individual
patches in OpenSSL 1.1.1, DISPATCH successfully unravels
923 of them with an average accuracy of 90.05%, indicat-
ing that DISPATCH can decompose entangled version diff
with high accuracy. As a comparison, the performance of
DISPATCH outperforms the traditional slicing without diff be-
havior by about 50%. Besides, from the ablation study results,
when patch behavior and statement analysis are introduced,
the number of generated decomposed patches decreases in
most cases, and the unraveling accuracy keeps increasing.
This indicates that the patch behavior provides essential infor-
mation among patch code changes, and the patch statement
analysis can further aggregate the modifications with the same
pattern. For versions f-g, h-i, and o-p, the number of decom-
posed patches decreases when the patch behavior is intro-
duced, while the number increases with the patch statement
analysis, which reveals that the pattern-guided slicing cuts off
the redundant dependencies efficiently, but we still need patch
segment analysis to obtain an individual patch. The result
implies the importance of each component of DISPATCH and
signifies the necessity to make them work together.

We also analyze the cases where DISPATCH fails to de-
compose and summarize three main reasons. First, the same
modification semantics may have divergent ways of presenta-
tion. For example, in the Listing 3, the patch aims to enlarge
the cookie size by changing the function name and the value
of the corresponding macro. However, these two hunks do
not have any dependencies or similarities, resulting in that



DISPATCH fails to integrate the two types of modifications.
Second, the same value of the same purpose may be assigned
to different variables. For example, in the Listing 4, the mod-
ifications in the two hunks aim to initialize the length of an
SSL object. However, the initialization operations happen in
different functions with different variable names; hence, such
semantics fail to be captured by the diff behavior and simi-
larity analysis. Third, DISPATCH fails to capture the indirect
data dependencies. For example, in the Listing 5, s->session
is instantiated from the struct ssl_session_st. Since the ele-
ment of the struct ssl_session_st has been deleted, the other
instance should also delete the usage of the deleted element.
However, DISPATCH fails to capture the two-hop data de-
pendency. In such cases, our semantic analysis may detect
significant semantic differences between the pre-patch and
the post-patch, failing to integrate such differences.

1 diff --git a/ssl/packet_local.h b/ssl/packet_local.h
2 - || !PACKET_get_net_4(&cookie, &tm)
3 + || !PACKET_get_net_8(&cookie, &tm)
4 diff --git a/.../..._srvr.c b/.../..._srvr.c
5 -#define MAX_COOKIE_SIZE (...+4+2+EVP_MAX_MD_SIZE
6 +#define MAX_COOKIE_SIZE (...+8+2+EVP_MAX_MD_SIZE

Listing 3: Same update purpose with different presentations.

1 diff --git a/ssl/s3_lib.c b/ssl/s3_lib.c
2 + s->s3->tmp.psklen = 0;
3 diff --git a/.../statem_clnt.c b/.../statem_clnt.c
4 + s->s3->tmp.pmslen = 0;

Listing 4: Same value assignment to independent variables.

1 diff --git a/ssl/ssl_local.h b/ssl/ssl_local.h
2 - int peer_type;
3 diff --git a/.../statem_clnt.c b/...m/statem_clnt.c
4 - s->session->peer_type = certidx;

Listing 5: Missing critical data dependency.

Scalability. As shown in Table 2, Figure 6 and Appendix D,
the 23 entangled patches (i.e., version diffs) consist of 3-122
individual patches (6-128 commits) as well as involve 4-716
modified files and 103-15,645 changed LOC. Among these
entangled patches, DISPATCH maintains good performance
consistently, indicating the scalability of DISPATCH to handle
large patches. In summary, with PatchGraph and tailored slic-
ing mechanism, DISPATCH can unravel the entangled patches
with high accuracy and scale well to large entangled patches.

7.2 Comparison with Baseline Models (RQ2)
To further evaluate the performance of DISPATCH on gen-
eral patch decomposition, we conduct comparison experi-
ments with SOTA methods. We choose three representa-
tive works from different categories: SPatch [36] (a slicing-
based approach), GPT-4 [16] (an LLM-based approach), and
UTANGO [32] (a GNN-based approach). Note that these ex-
isting works only focus on general patch decomposition and
DISPATCH is the first to unravel individual security patches.
Comparison with SPatch. SPatch divides a patch into mul-
tiple Change Units (CUs) as individual patches, integrating

code changes from a single edit action—add, delete, update,
move—that share a data flow into one CU. Since the source
code is not released, we reimplement it following the design.

From Table 3, among 1025 individual patches in OpenSSL
1.1.1, SPatch successfully unravels 405 of them with an aver-
age accuracy of 39.51%, indicating that SPatch has limited
ability to unravel the entangled version diff. Besides, we can
also notice that the number of generated patches is larger than
the ground truth and the average size of the generated patch
is much smaller than actual ones. Compared with DISPATCH,
The reasons behind the results are from three aspects. First,
SPatch neglects the control flow, missing the critical execu-
tion logic, especially for the no-parameter functions. Second,
SPatch does not take inter-procedural relationships, e.g., the
call dependency, and macro usages, which also cause the fail-
ure of bridging the dependent edit actions. Third, although
the SPatch considers the update edit action, it still forgets
to utilize the fine-grained updated information as attributes
to merge the changes. To sum up, DISPATCH outperforms
SPatch by increasing 50.54% of the unravelment accuracy.
Comparison with GPT-4. Large language models (LLMs)
have been widely used in code understanding tasks, i.e., secu-
rity patch analysis [19, 28, 49]. The performance of LLMs in
patch analysis is often influenced by how well the prompts are
constructed. We choose GPT-4 and design the prompt in three
content [19]: (1) basic content simply provides the task that
we want GPT-4 to solve, (2) reward content uses motivational
phrases like “If you perform very well, I will generously tip
you.”, and (3) punish content warns “If you perform badly,
you will be fined.” on two experiment settings: (1) zero-shot
and (2) few-shot. For the second setting, we instruct GPT-4 to
unravel entangled patches with two examples. Then, we ask
GPT-4 to identify the individual ones.

From Table 3, we show the result from zero-shot with basic
content, which is the best among the above six settings. There
are seven blank results, and the reasons are from two aspects.
First, GPT-4 can not process the version diff that exceeds
their maximum token length, e.g., a-b and b-c. Second, since
our prompt is constructed by asking GPT-4 to decompose
the version diff and then providing the version diff, GPT-
4 may forget the instruction. Thus, GPT-4 may reply with
some unrelated answers, e.g., the output of 0-a is an image.
Compared with SPatch, GPT-4 can extract interprocedural
semantics, but this will cause GPT-4 to group the changes
resolving different purposes while belonging to the related
function together, leading to the number of generated patches
being much smaller while the average size is much larger.
Therefore, GPT-4 only has a limited ability to understand
tangled commits and identify the individual patches.
Comparison with UTANGO. UTANGO decomposes tan-
gled commits with a context-aware, graph-based, code change
representation learning model. Initially, they employ GloVe
embedding [45] for each token and compute the average em-
bedding to represent each statement. Subsequently, they uti-



Table 3: Comparison with slicing, LLM, and GNN based patch unraveling solutions.

Version Groundtruth SPatch [36] GPT-4 [16] UTANGO [32] DISPATCH
# IP # GP # EMIP Accuracy # GP # EMIP Accuracy # GP # EMIP Accuracy # GP # EMIP Accuracy

0-a 122 365 42 34.43% - - - 306 45 36.89% 151 102 83.61%
a-b 113 527 31 27.43% - - - 371 40 35.98% 129 103 91.15%
b-c 81 614 39 48.15% - - - 208 33 40.74% 94 73 90.12%
c-d 118 525 42 35.59% - - - 417 39 33.05% 131 108 91.53%
d-e 114 1131 34 29.82% - - - 1652 48 42.11% 125 107 93.86%
e-f 11 54 2 18.18% 17 4 36.36% 43 3 27.27% 15 9 81.82%
f-g 16 394 7 43.75% - - - 358 11 68.75% 20 12 75%
g-h 82 261 40 48.78% - - - 230 37 45.12% 89 76 92.68%
h-i 24 47 11 45.83% 18 7 29.17% 33 12 50% 27 21 87.5%
i-j 29 41 14 48.28% 7 0 0% 36 13 44.83% 32 26 89.66%
j-k 17 44 9 52.94% 14 8 47.06% 34 10 55.82% 29 15 88.24%
k-l 72 167 29 40.28% 6 4 5.56% 136 29 40.28% 89 67 93.06%
l-m 58 90 42 72.41% 3 3 5.17% 69 36 62.07% 66 53 91.38%
m-n 23 49 13 56.52% 13 11 47.83% 37 16 69.57% 28 19 82.61%
n-o 22 53 11 50% 20 13 59.09% 45 11 50% 22 22 100%
o-p 19 36 7 36.84% 15 9 47.37% 26 11 57.89% 23 15 78.95%
p-q 5 11 1 20% 4 4 80% 7 3 60% 6 4 80%
q-r 33 63 14 42.42% 3 1 3.03% 55 14 42.42% 35 31 93.94%
r-s 4 15 0 0% 3 3 75% 11 2 50% 3 3 75%
s-t 23 38 9 39.13% 18 6 26.09% 66 10 43.48% 27 22 95.65%
t-u 24 40 5 20.83% 14 8 33.33% 68 6 25% 30 21 87.5%
u-v 3 6 0 0% 4 2 66.67% 5 1 33.33% 3 3 100%
v-w 12 26 3 25% 8 5 41.67% 19 6 50% 14 11 91.67%
Total 1025 4597 405 39.51% 167 88 23.22% 4232 436 42.54% 1188 923 90.05%

lize a Label-GCN (Graph Convolutional Network) [21] to
incorporate contextual information into the embedding. Fi-
nally, they apply an agglomerative clustering algorithm [38]
to cluster the code changes. UNTANGO releases the code and
model based on Java/C# [6]. We extend it to properly embed
C/C++ code by training the GloVe model with OpenSSL and
then feeding the embedding to their released model. Note
that the original evaluation metrics used in UNTANGO are
to calculate how many statements have been assigned to the
correct cluster that represents an individual patch. Since we
value the completeness of the generated patch, we evaluate
how many individual patches can be identified accurately.

According to the discussion in UTANGO, it is less accu-
rate when the number of changed statements is more than
40 [32]. However, the minimum line of the changed statement
in our dataset exceeds 40. Besides, since UTANGO has been
trained on Java/C#, UTANGO has a limited understanding of
C/C++ code. Moreover, UTANGO overlooks the interproce-
dural relationships. To ensure a fair comparison, we evaluate
UTANGO at the function level, which restricts the number of
changed statements per decomposition. As shown in Table 3,
UTANGO achieves an average unraveling accuracy of 42.5%,
demonstrating its limited ability to decompose individual
patches, even with fewer than 40 changed statements.

From the above comparisons, we conclude that the existing
decomposition approaches are not capable of decomposing in-
dividual patches from entangled version diff effectively. More-
over, SPatch and UTANGO cannot identify security-related
individual patches. They lack a mechanism to distinguish se-
curity patches and non-security patches and mix the security
patches with any update related to them.

7.3 Unraveling Security Patch (RQ3)
To evaluate the ability of DISPATCH to decompose the in-
dividual security patches, we consider all of the individual
security patches in 23 versions of OpenSSL 1.1.1, including
the public security patches indexed by CVEs and the silent se-
curity patches annotated by previous papers [53,57,58]. They
were used as the ground truth to calculate recall and precision
of DISPATCH on generating individual security patches.

As shown in Table 4, among 504 ground-truth security
patches, 465 are successfully identified by the DISPATCH,
indicating a recall of 91.9%. Among 531 individual secu-
rity patches unraveled by the DISPATCH, 465 of them are
real security patches, resulting in a precision rate of 87.75%.
Moreover, we check the results on official security patches
that are publicly indexed by CVEs in OpenSSL 1.1.1 [4].
87.5% of patches annotated by CVEs are correctly decom-
posed by DISPATCH. More detailed results can be found in
Appendix E Table 11.

We analyze the cases where DISPATCH fails to unravel and
identify the individual security patches. First, the individual
security patches are not completely decomposed from the
entangled diff. The reason can be found in § 7.1. Second, the
individual patches are completely decomposed but labeled as
non-security individual patches. This is mainly because of the
limited scope of the patterns derived from the existing security
patch dataset. For example, DISPATCH fails to detect the
individual patch in the version diff between OpenSSL 1.1.1t
and 1.1.1u that fixes the timing leak [2]. This vulnerability
is fixed by updating the variable assignment logic, which is
beyond our consideration.

We also investigate the false positives and identify two
main causes: incomplete decomposition of individual patches
(detailed in § 7.1) and mislabeling non-security patches



Table 4: Security patch unraveling results in OpenSSL 1.1.1.

Version Groundtruth DISPATCH
# ISP # GSP # EMISP Recall Precision

0-a 53 62 46 86.79% 74.19%
a-b 56 63 51 91.07% 80.95%
b-c 33 34 31 93.94% 91.18%
c-d 64 59 59 92.19% 100%
d-e 44 48 42 95.45% 87.5%
e-f 5 4 4 80% 100%
f-g 8 7 5 62.5% 71.43%
g-h 43 44 42 97.67% 95.45%
h-i 9 8 7 77.78% 87.5%
i-j 14 15 14 100% 93.33%
j-k 9 9 9 100% 100%
k-l 37 40 35 94.59% 87.5%
l-m 33 36 30 90.91% 83.33%
m-n 10 13 10 100% 76.92%
n-o 10 10 9 90% 90%
o-p 11 12 8 72.73% 66.67%
p-q 4 4 4 100% 100%
q-r 19 19 18 94.74% 94.74%
r-s 1 2 1 100% 50%
s-t 13 13 13 100% 100%
t-u 15 16 14 93.33% 87.5%
u-v 2 2 2 100% 100%
v-w 11 11 11 100% 100%
Total 504 531 465 91.9% 87.75%

# ISP: the number of individual security patches.
# GSP: the number of generated security patches.
# EMISP: the number of exactly matched individual security patches.

Table 5: Patch unraveling results.

Application Groundtruth DISPATCH
# IP # GP # EMIP Accuracy

Nginx 26 29 24 92%
Linux Kernel 114 118 113 99%
ImageMagick 50 58 48 96%
Total 190 205 185 95%

as security-related due to context absence. For instance,
cleanup_old_md_data in Listing 6 was mistakenly tagged as a
security patch, but it’s merely a refactor, including an if-check
without changing the security level.

1 diff --git a/crypto/digest.c b/crypto/digest.c
2 - if (ctx->digest && ctx->digest->ctx_size) {
3 - OPENSSL_clear_free(ctx->md_data, ctx_size);
4 - ctx->md_data = NULL;
5 - }
6 + cleanup_old_md_data(ctx, 1);

Listing 6: Lack of context information.

Based on these observations, DISPATCH can identify in-
dividual security patches with the help of the pre-defined
patterns, achieving a high recall and precision.
New Security Patch Identification. As shown in Table 11 (Ap-
pendix E), there are 24 security patches publicly indexed by
NVD [7] in OpenSSL 1.1.1. When labeling the ground truth,
we identify 480 more security patches. Among these newly
identified security patches, DISPATCH can decompose and
pinpoint 444 (92.5%) of them, indicating DISPATCH is able
to identify undisclosed security patches.

7.4 Effectiveness on Different Software (RQ4)
To evaluate the pattern’s coverage and DISPATCH’s perfor-
mance across diverse software ecosystems, we evaluate DIS-
PATCH on three other popular open-source projects covering

Table 6: Security patch unraveling results.

Application Groundtruth DISPATCH
# ISP # GSP # EMISP Recall Precision

Nginx 12 14 11 92% 79%
Linux Kernel 73 74 73 100% 99%
ImageMagick 24 22 22 92% 100%
Total 109 641 571 94.6% 92.6%

different application domains, i.e., Linux Kernel (operating
system core), Nginx (webserver), and ImageMagick (image
editing software), each with a significant number of known
vulnerabilities. We manually decompose the version diffs
into individual patches as the ground truth. Our experiments
focus on the following relatively new version comparison:
Linux Kernel v5.16-rc7 and v5.16-rc8, Nginx release-1.1.0
and 1.1.3, and ImageMagick 7.0.1-7 and 7.0.1-10.

Table 5 shows DISPATCH achieves 95% accuracy, decom-
posing 185 out of 190 individual patches. DISPATCH’s effec-
tiveness and generalization capability across different appli-
cations come from 3 key aspects: (1) PatchGraph captures
syntax differences by analyzing statement types and compar-
ing fine-grained tokens, which are application-agnostic; (2)
the identified 12 security and 3 non-security patterns effec-
tively cover a wide range of real-world patch instances; (3)
the pattern-guided slicing adopts fuzzy matching of pattern
structures, which is also not application-dependent. We also
compare the selected baseline models with DISPATCH. As
shown in Table 12 from Appendix F, the results align with
the comparison on the OpenSSL dataset.

We further evaluate the effectiveness of DISPATCH on un-
raveling individual security patches. Table 6 shows that the
average unraveling recall is 94.6% and precision is 92.6%.
From the experimental results, DISPATCH can effectively
decompose and identify individual security patches, while
the decomposition ability of DISPATCH is consistent in both
security and non-security scenarios.

7.5 Effectiveness on Complex Patches (RQ5)
To assess DISPATCH’s effectiveness on complex entangled
security patches, two scenarios are exemplified.
Security Patches Entangled with Non-security Patches.
Listing 7 demonstrates how DISPATCH decides the bound-
ary between two patches. There are two individual patches
in Listing 7. The individual non-security (Lines 1-7) patch
refactors the while loop with the for loop, and the individual
security patch (Line 8) frees the fds to avoid memory leakage.
The value of the freed variable is assigned in the non-security
patch. The refactoring pattern and the added memory-related
function pattern split the entangled patch into two patch seg-
ments. The patch segment analysis confirms that fds is not
new, eliminating the need for merging. This example illus-
trates how patch statement analysis defines patch boundaries
and the necessity of segment analysis.
Security Patches Entangled with Security Patches. List-
ing 8 showcases a patch that entangles two security patches



1 + size_t i;
2 - while (numfds > 0) {
3 - openssl_fdset((int)*fds, &asyncfds);
4 - numfds--;
5 - fds++;
6 + for (i = 0; i < numfds; i++) {
7 + openssl_fdset((int)fds[i], &asyncfds);
8 + OPENSSL_free(fds);

Listing 7: Security patches entangled with non-security ones.

(Lines 2-3, Line 4). While it is important to timely apply all
security patches, there is still a need to decompose entan-
gled security patches to inform users or system administrators
about specific details, allowing them to make informed deci-
sions on patching. In this context, DISPATCH demonstrates
its capability to decompose such patches, as evidenced by its
effective use of update conditional statements and memory-
related function patterns to separate individual patches.

1 diff --git a/.../pem_pk8.c b/.../pem_pk8.c
2 - if (klen <= 0) {
3 + if (klen < 0) {
4 + OPENSSL_cleanse(psbuf, klen);

Listing 8: Security patches entangled with security patches.

8 Discussion
Limitations. DISPATCH uses Tree-sitter [11] to generate AST
and adopts MLTA [35] to identify the indirect call targets.
Thus, DISPATCH inherits their limitations inevitably. Besides,
the current patch patterns may have two limitations. First, we
extract patch patterns from public security patch database,
where the distribution of vulnerability types may be skew-
ered. However, from our observation, the patch patterns for
popular software may not vary a lot. Second, the patterns
are generated by security experts, who may introduce bias
to certain types and be subjective to distinguish a security
patch and a non-security one for some cases (e.g., security
patch and non-security may share the same pattern). Here,
we follow the guidelines in NVD CWE [42] and classify a
patch as a security one if it fixes a vulnerability associated
with any CWE type. Moreover, the definition of an individual
patch can be subjective, as opinions may differ among experts.
Some may consider a single modification as a patch, while
others may take it as a part of a fix. To mitigate this subjectiv-
ity, we involved three experts in the labeling process. These
experts collaboratively studied the individual patches and dis-
cussed labeling criteria. To further minimize the subjectivity,
we compile and test the project with individual patches.
Usability. DISPATCH can be adapted to other languages (like
C, Java, Python, and Go) by extending the Tree-sitter [11]. We
will extend our tool to support more languages by introduc-
ing more language-specific patterns. Furthermore, DISPATCH
is platform-independent since we only utilize source code
without any requirements on patch format.
Patch Quality. For the manually labeled patches, the syntax
quality has been guaranteed twofold. First, the experts scruti-
nized the entangled patches and the individual patches with
their empirical knowledge. Second, we applied the ground

truth back to the pre-patch source code; then, we built and
compiled the patched code. As for semantic quality, we ran-
domly select individual patches and check them manually.
From the result, semantic correctness can be guaranteed. To
ensure the original functionality, we run available test cases
(e.g., built-in test cases in OpenSSL [8]) after applying each
individual patch. This confirms that the individual patches pre-
serve functionality when the decomposition results align with
the ground truth. Additionally, all obtained individual patches
are not cumulative and can be applied back independently.

9 Related Work
Entangled Patch Analysis and Decomposition. Researchers
have made some efforts to decompose tangled commits. The
heuristic-based approaches obtain single-purpose commits by
utilizing the pre-defined templates or mining patterns [20, 25,
27, 29, 30, 48, 50]. The slicing-based approaches [25, 39, 56]
and graph clustering-based approaches [18, 22, 24, 32, 41, 44,
47, 51] conduct dependency analysis and group the nodes in
the dependency graph using program slicing techniques and
graph clustering algorithms, respectively. Besides, [25,47,56]
introduce an interactive mechanism to compensate for the au-
tomatic process. Moreover, [23] adopts the information from
IDE, and [26, 46] decompose the tangled commits manually.
Constrained Program Slicing. Researchers introduce multi-
ple constraints to guide the program slicing. [34] introduces
the key point (center) and slices code gadgets from DFG or
CFG. [59] refines code gadgets by proposing code attention,
which is a subset of statements matching with specific syn-
tax characteristics. [33] refines the starting point and node
types for program slicing. [37] defines manifestation points
according to the type of vulnerabilities. Compared with them,
pattern-guided slicing offers adaptability to DISPATCH by
guiding the slicing procedure with fuzzy matching.

10 Conclusion
We propose DISPATCH to unravel individual security patches
from entangled ones with PatchGraph and patch dependency
analysis. PatchGraph represents the fine-grained diff behav-
iors with the enriched graph structure capturing the delet-
ed/added/updated semantics. The patch dependency analysis
involves statement and segment dependency analysis to obtain
complete individual security patches. We evaluate the effec-
tiveness of DISPATCH on version diffs of four real-world pop-
ular projects. The experimental results show DISPATCH effec-
tively unravels more than 90% of general individual patches
and over 87% of individual security ones. We compare our
approach with SOTA methods and DISPATCH outperforms
them, with an accuracy improvement of over 20%.

Acknowledgments
We thank our Shepherd and the reviewers for their insightful
feedback. This work is partially supported by ONR grant



N00014-23-1-2122 and an IDIA P3 Faculty Fellowship from
George Mason University.

Ethics Considerations
Our work performs program analysis on open-source code
from GitHub. All experiments are conducted on publicly avail-
able source code and detection models. Since no new vulnera-
bilities will be generated or identified by this work, no ethical
issues will arise.

Open Science
The source code and dataset of this work are available at:
https://figshare.com/articles/software/DISPATCH/28256150.

References
[1] “Official Patch for CVE-2021-3449,” https://github.com/openssl/

openssl/commit/fb9fa6b51defd48157eeb207f52181f735d96148.

[2] “Official Patch for CVE-2022-4304,” https://github.com/openssl/
openssl/commit/3f499b24f3bcd66db022074f7e8b4f6ee266a3ae.

[3] “Official Patch for CVE-2023-0464,” https://github.com/openssl/
openssl/commit/879f7080d7e141f415c79eaa3a8ac4a3dad0348b.

[4] “OpenSSL Vulnerabilities Fixed in OpenSSL 1.1.1,” https://www.
openssl.org/news/vulnerabilities-1.1.1.html.

[5] “grammar zoo - browsable c99 grammar 2015,” 2015. [Online].
Available: https://slebok.github.io/zoo/c/c99/iso-9899-tc3/extracted/
index.html

[6] “Git Repository of UTANGO.” https://github.com/
Commit-Untangling/commit-untangling, 2022.

[7] “National Vulnerability Database,” https://nvd.nist.gov, 2023.

[8] “OpenSSL Project,” https://github.com/openssl/openssl, 2023.

[9] “Patch,” https://csrc.nist.gov/glossary/term/patch, 2023.

[10] “Release Strategy of OpenSSL,” https://www.openssl.org/policies/
releasestrat, 2023.

[11] “Tree-Sitter,” https://tree-sitter.github.io/tree-sitter/, 2023.

[12] 2024. [Online]. Available: https://github.com/nothings/stb/commit/
98fdfc6df88b1e34a736d5e126e6c8139c8de1a6

[13] 2024. [Online]. Available: https://github.com/FFmpeg/FFmpeg/
commit/54655623a82632e7624714d7b2a3e039dc5faa7e

[14] “Split View of a Commit.” https://github.com/openssl/openssl/commit/
041962b429ebe748c8b6b7922980dfb6decfef26?diff=split&w=0,
2024.

[15] “Understanding Patches and Software Updates.” https://www.cisa.gov/
news-events/news/understanding-patches-and-software-updates, 2024.

[16] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[17] alexbuckgit, “C docs - get started, tutorials, reference.” 2024. [Online].
Available: https://learn.microsoft.com/en-us/cpp/c-language/?view=
msvc-170

[18] R. Arima, Y. Higo, and S. Kusumoto, “A study on inappropriately
partitioned commits: How much and what kinds of ip commits in java
projects?” in Proceedings of the 15th International Conference on
Mining Software Repositories, 2018, pp. 336–340.

[19] W. Bai, Q. Wu, K. Wu, and K. Lu, “Exploring the influence of prompts
in llms for security-related tasks.”

[20] M. Barnett, C. Bird, J. Brunet, and S. K. Lahiri, “Helping developers
help themselves: Automatic decomposition of code review changesets,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1. IEEE, 2015, pp. 134–144.

[21] C. Bellei, H. Alattas, and N. Kaaniche, “Label-gcn: an effective method
for adding label propagation to graph convolutional networks,” arXiv
preprint arXiv:2104.02153, 2021.

[22] S. Chen, S. Xu, Y. Yao, and F. Xu, “Untangling composite commits
by attributed graph clustering,” in Proceedings of the 13th Asia-Pacific
Symposium on Internetware, 2022, pp. 117–126.

[23] M. Dias, A. Bacchelli, G. Gousios, D. Cassou, and S. Ducasse, “Untan-
gling fine-grained code changes,” in 2015 IEEE 22nd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER).
IEEE, 2015, pp. 341–350.

[24] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in Proceedings of
the 29th ACM/IEEE international conference on Automated software
engineering, 2014, pp. 313–324.

[25] B. Guo and M. Song, “Interactively decomposing composite changes to
support code review and regression testing,” in 2017 IEEE 41st Annual
Computer Software and Applications Conference. IEEE, 2017, pp.
118–127.

[26] S. Herbold, A. Trautsch, and B. Ledel, “Large-scale manual valida-
tion of bugfixing changes,” in Proceedings of the 17th International
Conference on Mining Software Repositories, 2020, pp. 611–614.

[27] K. Herzig, S. Just, and A. Zeller, “The impact of tangled code changes
on defect prediction models,” Empirical Software Engineering, vol. 21,
pp. 303–336, 2016.

[28] M. Jin, S. Shahriar, M. Tufano, X. Shi, S. Lu, N. Sundaresan, and
A. Svyatkovskiy, “Inferfix: End-to-end program repair with llms,” in
Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing, 2023, pp. 1646–1656.

[29] H. Kirinuki, Y. Higo, K. Hotta, and S. Kusumoto, “Hey! are you com-
mitting tangled changes?” in Proceedings of the 22nd International
Conference on Program Comprehension, 2014, pp. 262–265.

[30] ——, “Splitting commits via past code changes,” in 2016 23rd Asia-
Pacific Software Engineering Conference (APSEC). IEEE, 2016, pp.
129–136.

[31] F. Li and V. Paxson, “A large-scale empirical study of security patches,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, 2017, pp. 2201–2215.

[32] Y. Li, S. Wang, and T. N. Nguyen, “Utango: untangling commits with
context-aware, graph-based, code change clustering learning model,”
in Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing, 2022, pp. 221–232.

[33] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A frame-
work for using deep learning to detect software vulnerabilities,” IEEE
Transactions on Dependable and Secure Computing, vol. 19, no. 4, pp.
2244–2258, 2021.

[34] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability detec-
tion,” arXiv preprint arXiv:1801.01681, 2018.

[35] K. Lu and H. Hu, “Where does it go? refining indirect-call targets with
multi-layer type analysis,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp.
1867–1881.

[36] C. Luo, W. Meng, and S. Wang, “Strengthening supply chain security
with fine-grained safe patch identification,” in 2024 IEEE/ACM 46th
International Conference on Software Engineering (ICSE). IEEE
Computer Society, 2024, pp. 873–873.

https://figshare.com/articles/software/DISPATCH/28256150
https://github.com/openssl/openssl/commit/fb9fa6b51defd48157eeb207f52181f735d96148
https://github.com/openssl/openssl/commit/fb9fa6b51defd48157eeb207f52181f735d96148
https://github.com/openssl/openssl/ commit/3f499b24f3bcd66db022074f7e8b4f6ee266a3ae
https://github.com/openssl/openssl/ commit/3f499b24f3bcd66db022074f7e8b4f6ee266a3ae
https://github.com/openssl/openssl/commit/879f7080d7e141f415c79eaa3a8ac4a3dad0348b
https://github.com/openssl/openssl/commit/879f7080d7e141f415c79eaa3a8ac4a3dad0348b
https://www.openssl.org/news/vulnerabilities-1.1.1.html
https://www.openssl.org/news/vulnerabilities-1.1.1.html
https://slebok.github.io/zoo/c/c99/iso-9899-tc3/extracted/index.html
https://slebok.github.io/zoo/c/c99/iso-9899-tc3/extracted/index.html
https://github.com/Commit-Untangling/commit-untangling
https://github.com/Commit-Untangling/commit-untangling
https://nvd.nist.gov
https://github.com/openssl/openssl
https://csrc.nist.gov/glossary/term/patch
https://www.openssl.org/policies/releasestrat
https://www.openssl.org/policies/releasestrat
https://tree-sitter.github.io/tree-sitter/
https://github.com/nothings/stb/commit/98fdfc6df88b1e34a736d5e126e6c8139c8de1a6
https://github.com/nothings/stb/commit/98fdfc6df88b1e34a736d5e126e6c8139c8de1a6
https://github.com/FFmpeg/FFmpeg/commit/54655623a82632e7624714d7b2a3e039dc5faa7e
https://github.com/FFmpeg/FFmpeg/commit/54655623a82632e7624714d7b2a3e039dc5faa7e
https://github.com/openssl/openssl/commit/041962b429ebe748c8b6b7922980dfb6decfef26?diff=split&w=0
https://github.com/openssl/openssl/commit/041962b429ebe748c8b6b7922980dfb6decfef26?diff=split&w=0
https://www.cisa.gov/news-events/news/understanding-patches-and-software-updates
https://www.cisa.gov/news-events/news/understanding-patches-and-software-updates
https://learn.microsoft.com/en-us/cpp/c-language/?view=msvc-170
https://learn.microsoft.com/en-us/cpp/c-language/?view=msvc-170


[37] Y. Mirsky, G. Macon, M. Brown, C. Yagemann, M. Pruett, E. Downing,
S. Mertoguno, and W. Lee, “Vulchecker: Graph-based vulnerability
localization in source code,” in 31st USENIX Security Symposium,
Security 2022, 2023.

[38] D. Müllner, “Modern hierarchical, agglomerative clustering algorithms,”
arXiv preprint arXiv:1109.2378, 2011.

[39] W. Muylaert and C. De Roover, “Untangling composite commits using
program slicing,” in 2018 IEEE 18th International Working Conference
on Source Code Analysis and Manipulation (SCAM). IEEE, 2018, pp.
193–202.

[40] H. A. Nguyen, A. T. Nguyen, and T. N. Nguyen, “Filtering noise
in mixed-purpose fixing commits to improve defect prediction and
localization,” in 2013 IEEE 24th international symposium on software
reliability engineering (ISSRE). IEEE, 2013, pp. 138–147.

[41] H. A. Nguyen, T. N. Nguyen, D. Dig, S. Nguyen, H. Tran, and M. Hilton,
“Graph-based mining of in-the-wild, fine-grained, semantic code change
patterns,” in 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering (ICSE). IEEE, 2019, pp. 819–830.

[42] NIST, “Common Weakness Enumeration Specification (CWE),” https:
//nvd.nist.gov/vuln/categories.

[43] OpenSSL, “crypto/rsa/rsa_oaep.” https://github.com/openssl/openssl/
compare/OpenSSL_1_1_0...OpenSSL_1_1_1, 2023.

[44] P.-P. Pârt,achi, S. K. Dash, M. Allamanis, and E. T. Barr, “Flexeme:
Untangling commits using lexical flows,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2020, pp.
63–74.

[45] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[46] K. A. Safwan and F. Servant, “Decomposing the rationale of code
commits: the software developer’s perspective,” in Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering,
2019, pp. 397–408.

[47] B. Shen, W. Zhang, C. Kästner, H. Zhao, Z. Wei, G. Liang, and Z. Jin,
“Smartcommit: a graph-based interactive assistant for activity-oriented
commits,” in Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2021, pp. 379–390.

[48] L. Sousa, D. Cedrim, A. Garcia, W. Oizumi, A. C. Bibiano, D. Oliveira,
M. Kim, and A. Oliveira, “Characterizing and identifying composite
refactorings: Concepts, heuristics and patterns,” in Proceedings of the
17th International Conference on Mining Software Repositories, 2020,
pp. 186–197.

[49] X. Tang, Z. Chen, K. Kim, H. Tian, S. Ezzini, and J. Klein, “Just-in-
time security patch detection–llm at the rescue for data augmentation,”
arXiv preprint arXiv:2312.01241, 2023.

[50] Y. Tao and S. Kim, “Partitioning composite code changes to facilitate
code review,” in 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories. IEEE, 2015, pp. 180–190.

[51] M. Wang, Z. Lin, Y. Zou, and B. Xie, “Cora: Decomposing and de-
scribing tangled code changes for reviewer,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 1050–1061.

[52] S. Wang, X. Wang, K. Sun, S. Jajodia, H. Wang, and Q. Li, “Graphspd:
Graph-based security patch detection with enriched code semantics,”
in 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2023,
pp. 2409–2426.

[53] X. Wang, S. Wang, P. Feng, K. Sun, and S. Jajodia, “Patchdb: A large-
scale security patch dataset,” in 2021 51st Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN).
IEEE, 2021, pp. 149–160.

[54] M. Weiser, “Program slicing,” IEEE Transactions on software engi-
neering, no. 4, pp. 352–357, 1984.

[55] Wikipedia, “Levenshtein distance.” https://en.wikipedia.org/wiki/
Levenshtein_distance, 2024.

[56] S. Yamashita, S. Hayashi, and M. Saeki, “Changebeadsthreader: An
interactive environment for tailoring automatically untangled changes,”
in 2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2020, pp. 657–661.

[57] J. Zhou, M. Pacheco, J. Chen, X. Hu, X. Xia, D. Lo, and A. E. Hassan,
“Colefunda: Explainable silent vulnerability fix identification,” in 2023
IEEE/ACM 45th International Conference on Software Engineering
(ICSE). IEEE, 2023, pp. 2565–2577.

[58] Y. Zhou, J. K. Siow, C. Wang, S. Liu, and Y. Liu, “Spi: Automated
identification of security patches via commits,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 31, no. 1, pp.
1–27, 2021.

[59] D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, “µvuldeepecker: A deep
learning-based system for multiclass vulnerability detection,” IEEE
Transactions on Dependable and Secure Computing, vol. 18, no. 5, pp.
2224–2236, 2019.

A Entangled Patch Adoption
To justify that entangled patches are hard to merge while
smaller individual patches are easier to adopt, we conduct
case studies on OpenSSL’s pull requests. We analyze 339
closed pull requests in OpenSSL, comprising 200 unmerged
and 139 merged requests (as only 139 closed pull requests
were merged). As shown in Table 7, 221 involve C code,
with 92 from merged pull requests and 129 from unmerged
ones. Among the C-related pull requests, the entangled rate of
unmerged pull requests is nearly 20% higher than the merged
ones, indicating the difficulties of entangled patch adoption.

Table 7: Entangled Rate of Pull Requests (PRs) in OpenSSL.

# PR # C-related # Entangled Entangled Rate

Merged PR 139 92 27 29.34%
Unmerged PR 200 129 63 48.84%

Table 8: Metadata of Merged Pull Requests in OpenSSL.

Metrics Type Duration (h) # Commit # File # Reviewers

AVG
Entangled 151296 3 22 1
Individual 2469 3 53 1

MAX
Entangled 4084987 78 583 28
Individual 66173 6 1047 3

MIN
Entangled 13 1 1 0
Individual 4 1 1 0

Additionally, we evaluate the difficulty of patch understand-
ing and adoption from four perspectives: duration, the num-
ber of related commits, the number of modified files, and the
number of assigned reviewers. As shown in Tables 8 and 9,
entangled pull requests surpass individual ones in almost all

https://nvd.nist.gov/vuln/categories
https://nvd.nist.gov/vuln/categories
https://github.com/openssl/openssl/compare/OpenSSL_1_1_0...OpenSSL_1_1_1
https://github.com/openssl/openssl/compare/OpenSSL_1_1_0...OpenSSL_1_1_1
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance


Table 9: Metadata of Unmerged Pull Requests in OpenSSL.

Metrics Type Duration (h) # Commit # File # Reviewers

AVG
Entangled 35458 22 24 2
Individual 20120 2 4 3

MAX
Entangled 217068 186 159 8
Individual 165894 12 39 8

MIN
Entangled <1 1 1 0
Individual <1 1 1 0

aspects, whether considering average, maximum, or minimum
values. This further demonstrates that understanding an en-
tangled patch requires more effort than individual patches.

B Patch Patterns
We summarize the patterns based on the grammar rules [5,17],
e.g., statements, identifiers, and keywords, and struct the pat-
tern with a 4-tuple: (anchor node, forward slicing termination
criteria, backward slicing criteria, security indicator). There
are 12 security and three non-security patch patterns.

B.1 Security Patch Pattern
Add Security Check. This pattern focuses on newly added
sanity checks to prevent security issues, e.g., null pointer deref-
erence, buffer overflow, uninitialized use, etc. A conditional
statement checking critical values (e.g., boundary values or
return status) using specific keywords (e.g., NULL) is identi-
fied as anchor node. Backward slicing determines where the
variable within the condition statement is first introduced, and
forward slicing traces until the end of the if statement code
block. The security indicator is the existence of error-handling
operations, e.g., NULL, error report, or negative return status.

1 + if (n < 0){
2 + free(p);
3 + return -1;
4 + }

Listing 9: Instance of Add Security Check.
Update Security Check Conditions. This pattern describes
the patches that aim to elevate the security level of the existing
security check. The anchor nodes and security indicator are
two conditional statements connected by a diff behavior edge
and an attribute on the edge that shows more security checks
are added. Similar to the previous pattern, the slicing proce-
dure also finds the statements to define the checked variables
and the scope of each conditional statement.

1 - if (n < 0){
2 + if (n =< 0){

Listing 10: Instance of Update Security Check Conditions.
Add Memory Deallocation Function. Memory deallocation
functions refer to functions that free memory. This pattern
describes the patches using such functions to prevent memory
leakage, double free, or use after free. We consider the newly
added memory deallocation functions (e.g., function names
containing free, clean, and clear) as anchor nodes and the
security attribute indicator. Starting from the given node, we

1 - memcpy(dest, src, sizeof(src));
2 + memcpy_s(dest, sizeof(dest), src, sizeof(src));

Listing 11: Update Memory Management Function Instance.

perform backward slicing via the data dependency to locate
the statement of memory allocation, and forward slicing to
locate the NULL assignment to the freed variable.
Update Memory Management Function. Security patches
may update the memory management function for better re-
source allocation and release. The anchor nodes are the mem-
ory management function in the post-patch connected with
update function diff behavior, also serving as the security
attribute indicator.
Add Concurrency Control. To mitigate race conditions,
patches usually enforce limits on access to the same memory
area to ensure data consistency through lock-related functions
(e.g., lock) The anchor node and security indicator are the
lock functions added in the post-patch. The backward and
forward slicing aim to find the locked variable’s definition
and the corresponding unlock function, respectively.
Update Concurrency Control. Developers may introduce
errors when managing multiple locks for concurrent access
to the same resource. To resolve this, security patches adjust
the execution locations of lock and unlock functions. In this
context, the deleted lock functions serve as the anchor nodes
and security attribute indicators. Forward slicing identifies
the corresponding unlock functions with the locked variable.
Function Encapsulation. To reuse the security checks, devel-
opers encapsulate the existing checks with a new function. We
capture this pattern with the deleted conditional checks as the
anchor node and perform forward slicing to include the entire
check. With the deleted conditional block, we perform back-
ward slicing along the call relation to locate the newly added
function call and check whether the deleted check has been
redistributed to the function. The security attribute indicators
align with the newly added security checks.
Initialize Variables. Uninitialized use occurs when a variable
is declared but not initialized before being used. Security
patches typically assign NULL to such a variable in the post-
patch, which we can use as the anchor node. We take the
initialization value of NULL as a security attribute indicator.
No slicing is needed for this pattern.
Enlarge Buffer Size. One direct way to avoid buffer overflow
is to enlarge the buffer size. The anchor node here is a pointer
declaration statement in the pre-patch that connects to the
pointer declaration statement in the post-patch. If the size
is enlarged, i.e., security indicator, we label it as a security
segment candidate. No slicing is needed.
Update Return Value. The return value indicates the termi-
nation status of a function, and the value is to guide whether
to continue the execution. When the return values are updated
with negative values or macros with error keywords, we con-
sider them as the anchor node and security indicators. We do
not need to perform slicing for this pattern.
Enhance Error Handling. goto statements are adopted for



1 - return NULL;
2 + goto err;
3 +err:
4 + free(p);
5 + p = NULL;
6 + return NULL;

Listing 12: Enhance Error Handling Instance.

1 -void func(param1, param2, ...){
2 +int func(param1, param2, ...){
3 + int ret;
4 ...
5 + if(ret)
6 + return ret;
7 ...
8 + return 0;

Listing 13: Update Return Type Instance.

code reuse, and are widely used for unified error handling with
code reuse. We consider the modification that replaces the
simple return with a more considerate error-handling process
encapsulated in the goto as a security patch segment candidate.
The anchor node is an added goto statement with an error-
handling label. We perform backward slicing to locate the
deleted return statement along diff behavior edge and forward
slicing to contain the entire goto content. The indicator here
is the returned error status.
Update Return Type. Return type corresponds with the func-
tion type. We consider changes to the return type from one
type to another as candidates for security patch segments,
as they pass different statuses to the caller function. Added
return statements are treated as anchor nodes and security in-
dicators. Backward slicing is performed to connect the value
updates of the variable in the return statement.

B.2 Non-Security Patch Patterns
Debug. One way to get debug information is to print out error
messages. Since the printing behaviors do not disrupt the
program execution or change the value of its parameters, we
consider these as non-security segments. The anchor node is
the added debug function, i.e., functions with print, debug or
log. There is no security indicator associated with the debug
statement and DISPATCH does not perform slicing.
Refactor. Refactoring restructures the code by transforming
it into a cleaner and simpler design while maintaining the
same variables and conditions, e.g., changing multiple if to
switch. The anchor nodes are added conditional statements
that check the same condition but use different types of com-
pound statements, i.e., if, switch, while, and for. Forward
slicing is performed to include the entire body of the con-
ditional statements from both the pre-patch and post-patch
versions, ensuring that no content changes have occurred.
New Feature. New features are always added by introduc-
ing new cases, functions, or files. There are two sub-patterns
for the new feature. First, we directly treat the new files as a
non-security patch segment. We identify the new function def-
inition or new switch branches as an anchor node and perform
forward slicing to include the entire function as a non-security

patch segment. Second, variable declaration statements are
also identified as anchor nodes, and forward slicing is per-
formed along data dependencies to include all dependent
statements as patch segments.

B.3 Pattern Extension
To add new patch patterns, developers only need to adhere
to the specified patch pattern structure. Each new pattern is
represented as a 4-tuple: (anchor node, forward slicing termi-
nation criteria, backward slicing criteria, security indicator).
Anchor nodes are defined as a two-dimensional list, where the
first dimension specifies the statement type, and the second
dimension restricts statements based on keywords. Slicing
termination criteria are represented as a three-dimensional
list where the first dimension specifies the dependency type,
which will be used to perform slicing, and the second and
third dimensions specify the statement type and related re-
strictions. Finally, the security indicator is a two-dimensional
list where the first dimension stores the indicator type, and
the second dimension pinpoints the keywords. We will extend
our patterns according to the structure in the future.

C Implementation
DISPATCH is implemented with Python scripts. Given a ver-
sion diff, OSS patch, or commit, we first clone the correspond-
ing repository using Git and roll back to retrieve the pre-patch
and post-patch versions of the source code. We then use tree-
sitter [11] to generate the ASTs for the modified files and
construct the CDG, DDG, and CG. Next, we analyze the diff
file hunk by hunk to extract diff behaviors. For each statement
in a hunk, we compare the AST subtrees. If the statements
are of the same type and share predefined commonalities, we
record the changes. Control dependencies are updated if both
nodes on an edge are modified, and data dependencies are
updated if a variable is changed. We then integrate the diff
behaviors, CDG, DDG, and CG into a unified graph represen-
tation, referred to as PatchGraph. Then, we traverse the nodes
sequentially, select anchor nodes by matching the type and
fuzzy matching the keywords, and perform constrained slicing
while marking visited edges during the statement-level analy-
sis. Unvisited edges are further analyzed to decide whether
to keep or discard them based on the pre-defined rules. If the
unvisited edge has been kept, the related patch segments are
combined. The merged patch segments are further merged if
they are similar by calculating the Levenshtein distance. This
process concludes with the individual patch generation.

D OpenSSL Data Description
Table 10 lists the metadata of version diffs of OpenSSL 1.1.1,
including the number of modified C/C++ files, related com-
mits in C/C++, and lines of the version diff.



Table 10: Metadata of version diffs in OpenSSL 1.1.1.
Version # File # Commit # Lines of Diff

0-a 111 124 3,741
a-b 143 120 10,496
b-c 106 83 15,645
c-d 186 125 6,050
d-e 716 128 8,994
e-f 19 9 623
f-g 31 20 2,550
g-h 98 79 4,153
h-i 28 28 916
i-j 36 28 843
j-k 22 20 337
k-l 78 80 2,736
l-m 59 58 1,441
m-n 35 29 954
n-o 24 24 531
o-p 21 19 712
p-q 6 8 189
q-r 34 29 1,275
r-s 4 6 206
s-t 33 22 1,782
t-u 20 18 1,198
u-v 6 8 103
v-w 9 8 161

E Unravelment Results on Security Patches
Annotated by CVEs

In the NVD, there are 24 CVEs related to OpenSSL 1.1.1 that
contain corresponding security patches in C/C++, as anno-
tated in the CVE records. Among them, DISPATCH success-
fully decomposed 21 of them, yielding the 87.5% accuracy.

Table 11 shows the detailed results. We analyze the cases
where DISPATCH fails to unravel and showcase the reasons.
DISPATCH split the patch for CVE-2023-0464 and CVE-2019-
1563 into isolated patch segments and fails to merge them.
Listing 14 and 15 shows the simplified patch for CVE-2023-
0464 [3], which has been fixed by adding the node_maximum

and extra_data to constrain the validation for X509 certifi-
cate. However, DISPATCH split it into two separate patches
that add the two variables respectively, failing to merge them
because the parameter tree exists in the pre-patch and the
post-patch and DISPATCH treat it as unchanged and neglect
its dependencies. Besides, DISPATCH fails to decompose the
patch for CVE-2021-3449 [1], as shown in Listing 16, where
the first hunk is the official patch. DISPATCH merges the
two hunks since they perform the same change with a 100%
similarity ratio.

1 diff --git a/.../pcy_local.h b/.../pcy_local.h
2 @@ ... @@ struct X509_POLICY_LEVEL_st {
3 + size_t node_maximum;
4 diff --git a/.../pcy_node.c b/.../pcy_node.c
5 + if (tree->node_maximum > 0 ...)
6 + return NULL;

Listing 14: 1st patch for CVE-2023-0464.

Table 11: Unravelment Results on Security Patches Annotated
by CVEs [4] in OpenSSL 1.1.1.

CVE ID Patched Version Result

CVE-2023-3817 OpenSSL1.1.1v Yes
CVE-2023-3446 OpenSSL1.1.1v Yes
CVE-2023-2650 OpenSSL1.1.1u Yes
CVE-2023-0465 OpenSSL1.1.1u Yes
CVE-2023-0464 OpenSSL1.1.1u No
CVE-2023-0286 OpenSSL1.1.1t Yes
CVE-2023-0215 OpenSSL1.1.1t Yes
CVE-2022-4450 OpenSSL1.1.1t Yes
CVE-2022-4304 OpenSSL1.1.1t Yes
CVE-2022-0778 OpenSSL1.1.1n Yes
CVE-2021-3712 OpenSSL1.1.1l Yes
CVE-2021-3711 OpenSSL1.1.1l Yes
CVE-2021-3450 OpenSSL1.1.1k Yes
CVE-2021-3449 OpenSSL1.1.1k No
CVE-2021-23841 OpenSSL1.1.1j Yes
CVE-2021-23840 OpenSSL1.1.1j Yes
CVE-2020-1971 OpenSSL1.1.1i Yes
CVE-2020-1967 OpenSSL1.1.1g Yes
CVE-2019-1563 OpenSSL1.1.1d No
CVE-2019-1549 OpenSSL1.1.1d Yes
CVE-2019-1547 OpenSSL1.1.1d Yes
CVE-2019-1543 OpenSSL1.1.1c Yes
CVE-2018-0734 OpenSSL1.1.1a Yes
CVE-2018-0735 OpenSSL1.1.1a Yes

1 diff --git a/.../pcy_node.c b/.../pcy_node.c
2 X509_POLICY_NODE *level_add_node(X509_POLICY_LEVEL *level,
3 X509_POLICY_DATA *data,
4 X509_POLICY_NODE *parent,
5 - X509_POLICY_TREE *tree)
6 + X509_POLICY_TREE *tree,
7 + int extra_data)
8 diff --git a/.../pcy_tree.c b/.../pcy_tree.c
9 - if (level_add_node(..., tree) == NULL) {

10 + if (level_add_node(...., tree, 1) == NULL) {

Listing 15: 2nd patch for CVE-2023-0464.

F Baseline Supplement Experiments

Table 12 presents the comparison of patch unraveling accu-
racy among SPatch, GPT-4, UTANGO, and DISPATCH on
Nginx, the Linux Kernel, and ImageMagick. The results are
consistent with those observed for OpenSSL. Due to signif-
icant modifications in macro values and definitions, which
SPatch and UTANGO fail to handle properly, their results are
adversely affected.

1 diff --git a/.../extensions.c b/.../extensions.c
2 + s->s3->tmp.peer_sigalgslen = 0;
3 diff --git a/.../extensions_clnt.c b/.../extensions_clnt.c
4 + s->s3->tmp.peer_sigalgslen = 0;

Listing 16: Patch failing to be unraveled by DISPATCH for
CVE-2021-3449.

G DISPATCH Scalability
As the number of individual patches in one entangled patch
increases from 3 to 122, shown in Figure 6, DISPATCH main-



Table 12: Comparison with baseline approaches on Nginx, Linux Kernel, and ImageMagick.

Application Groundtruth SPatch GPT-4 UTANGO DISPATCH
# IP # GP # EMIP Accuracy # GP # EMIP Accuracy # GP # EMIP Accuracy # GP # EMIP Accuracy

Nginx 26 47 13 50% 6 5 19% 192 15 58% 29 24 92%
Linux Kernel 114 205 62 54% 7 3 3% 208 58 51% 118 113 99%
ImageMagick 50 420 13 26% 5 0 0% 429 14 28% 58 48 96%
Total 190 672 88 43.3% 18 8 7.3% 829 87 45.7% 205 185 95%

tains good performance consistently.

Number of Individual Patch in an Entangled Patch

U
nr

av
el

in
g 

A
cc

ur
ac

y 
(%

)

0

25

50

75

100

20 40 60 80 100 120

Figure 6: Accuracy on different sizes of entangled patch.


	Introduction
	Preliminaries
	Entangled Patches
	Program Dependencies
	Program Slicing

	A Motivating Example
	System Overview
	Patch Representation with PatchGraph
	Patch Dependency Analysis

	Patch Representation
	Diff Behavior Indentification
	PatchGraph Construction

	Individual Patch Generation
	Patch Pattern Discovery
	Patch Statement Dependency Analysis
	Patch Segment Dependency Analysis
	Patch Segment Integrator
	Individual Security Patch Identification


	Evaluation
	Accuracy and Scalability (RQ1)
	Comparison with Baseline Models (RQ2)
	Unraveling Security Patch (RQ3)
	Effectiveness on Different Software (RQ4)
	Effectiveness on Complex Patches (RQ5)

	Discussion
	Related Work
	Conclusion
	Entangled Patch Adoption
	Patch Patterns
	Security Patch Pattern
	Non-Security Patch Patterns
	Pattern Extension

	Implementation
	OpenSSL Data Description
	Unravelment Results on Security Patches Annotated by CVEs
	Baseline Supplement Experiments
	DisPatch Scalability

